Skip to main content

MicroRNAs in Kidney Diseases

  • Reference work entry
  • First Online:
Biomarkers in Kidney Disease

Abstract

MicroRNAs (miRNAs) play an important role in physiological and pathological condition in human organs including kidneys. Their dysregulation on one hand can induce the onset of a specific disease and on the other hand may represent potential biomarkers for the diagnosis and therapy. In this chapter, the miRNA functions and modulations are described in several kidney diseases such as polycystic kidney disease, primary and secondary glomerulonephritides and renal transplantation. After the overview on the approach to identify and study miRNAs in nephrology, the miRNA meaning in renal physiology is illustrated. Also, the attractive perspectives of the use of miRNAs as diagnostic tools or for the specific treatment of kidney disease are taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGO:

Argonaute

AKI:

Acute kidney injury

ANA:

Autoantibodies to nuclear antigen

ASO:

Antisense oligonucleotide

Bicc1:

Bicaudal C. homolog 1

CAMR:

Chronic antibody mediated rejection

Cdc25A:

Cell division cycle 25A

cDNA:

Complementary DNA

DGCR8:

RNA-binding protein DiGeorge syndrome critical region gene 8

DGF:

Delayed graft function

EMT:

Epithelial-to-mesenchymal transition

FPC:

Fibrocystin

GTP:

Guanosine triphosphate

HBEGF:

Heparin binding epidermal growth factor

HCV:

Hepatitis C virus

HIVAN:

HIV associated nephropathy

IF:

Interstitial fibrosis

IFN:

Interferon

IRAK1:

IL-1 receptor associated kinase1

IRI:

Ischemia-reperfusion injury

LN:

Lupus nephritis

miRNA:

MicroRNA

MRE:

MiRNA recognition elements

OREB:

Osmotic response element binding protein

PAZ:

Piwi-Argonaute-Zwille

PBMCs:

Peripheral blood mononuclear cells

PC:

Polycystin

PKD:

Polycystic kidney disease

pri-miRNA:

Primary miRNA transcript

RISC:

RNA-induced silencing complex

shRNA:

Small hairpin RNA

SLE:

Systemic lupus erythematosus

TA:

Tubular atrophy

TAL:

Thick ascending limb

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

TRAF6:

Tumor necrosis factor receptor-associated factor 6

TRBP:

Transactivator RNA binding protein

UTR:

Untranslated region

VEGF:

Vascular endothelial growth factor

VLP:

Virus like particles

WMLK:

With-no-lysine kinase

References

  • Aguado-Fraile E, Ramos E, Conde E, et al. MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrologia. 2013;33:826–34.

    PubMed  Google Scholar 

  • Ambros V. The function of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  • Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci U S A. 2009;106:5330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao H, Chen H, Zhu X, et al. MiR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgA nephropathy. Kidney Int. 2014a;85:624–35.

    Article  CAS  PubMed  Google Scholar 

  • Bao H, Hu S, Zhang C, et al. Inhibition of miRNA-21 prevents fibrogenic activation in podocytes and tubular cells in IgA nephropathy. Biochem Biophys Res Commun. 2014b;444:455–60.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov IZ, Muthukumar T, Morozov P, et al. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation. 2012;94:1086–94.

    Article  CAS  PubMed  Google Scholar 

  • Bijkerk R, van Solingen C, de Boer HC, et al. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J Am Soc Nephrol. 2014;25:1710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol. 2009;10:141–8.

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Xia Z, Zhang C, et al. Serum microRNAs levels in primary focal segmental glomerulosclerosis. Pediatr Nephrol. 2013;28:1797–801.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlsen AL, Schetter AJ, Nielsen CT, et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 2013;65:1324–34.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Lin X, Huang J, et al. Integrated profiling of microRNA expression in membranous nephropathy using high-throughput sequencing technology. Int J Mol Med. 2014;33:25–34.

    PubMed  Google Scholar 

  • Cheng K, Rai P, Plagov A, et al. MicroRNAs in HIV-associated nephropathy (HIVAN). Exp Mol Pathol. 2013a;94:65–72.

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Rai P, Plagov A, et al. Rapamycin-induced modulation of miRNA expression is associated with amelioration of HIV-associated nephropathy (HIVAN). Exp Cell Res. 2013b;319:2073–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Huang YS, Tang M, et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus. 2007;16:939–46.

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Sui W, Lan H, et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int. 2009;29:749–54.

    Article  CAS  PubMed  Google Scholar 

  • Danger R, Pallier A, Giral M, et al. Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J Am Soc Nephrol. 2012;23:597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danger R, Paul C, Giral M, et al. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection. PLoS ONE. 2013;8:e60702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divekar AA, Dubey S, Gangalum PR, et al. Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol. 2011;15:924–30.

    Article  Google Scholar 

  • Du R, Sun W, Xia L, et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS ONE. 2012;7:e30771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Huang H, Lv X, et al. PKHD1 post-transcriptionally modulated by miR-365-1 inhibits cell-cell adhesion. Cell Biochem Funct. 2012;30:382–9.

    Article  CAS  PubMed  Google Scholar 

  • Dweep H, Sticht C, Kharkar A, et al. Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: using PKD/Mhm rat model. PLoS ONE. 2013;8:e53780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK, Eckle T. Ischemia and reperfusion – from mechanism to translation. Nat Med. 2011;17:1391–401.

    Article  CAS  PubMed  Google Scholar 

  • Elvira-Matelot E, Zhou XO, Farman N, et al. Regulation of WNK1 expression by miR-192 and aldosterone. J Am Soc Nephrol. 2010;21:1724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flynt AS, Thatcher EJ, Burkewitz K, et al. miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. J Cell Biol. 2009;185:115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebeshuber CA, Kornauth C, Dong L, et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med. 2013;19:481–7.

    Article  CAS  PubMed  Google Scholar 

  • Godwin JG, Ge X, Stephan K, et al. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A. 2010;107:14339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Renigunta V, Himmerkus N, et al. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 2012;31:1999–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Himmerkus N, Plain A, et al. Epigenetic regulation of microRNAs controlling CLDN14 expression as a mechanism for renal calcium handling. J Am Soc Nephrol. 2014; pii: ASN.2014020129.

    Google Scholar 

  • Harvey SJ, Jarad G, Cunningham J, et al. Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol. 2008;19:2150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19:2069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Liu H, Wang T, et al. Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity. Nucleic Acids Res. 2011;39:475–85.

    Article  CAS  PubMed  Google Scholar 

  • Jang HR, Ko GJ, Wasowska BA, et al. The interaction between ischemia-reperfusion and immune responses in the kidney. J Mol Med. 2009;87:859–64.

    Article  CAS  PubMed  Google Scholar 

  • Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94.

    Article  CAS  PubMed  Google Scholar 

  • Krebs CF, Kapffer S, Paust HJ, et al. MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J Am Soc Nephrol. 2013;24:1955–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SO, Masyuk T, Splinter P, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008;118:3714–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DH, Yue P, Pan C, et al. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J Am Soc Nephrol. 2011;22:1087–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DH, Yue P, Zhang C, et al. MicroRNA-194 (miR-194) regulates ROMK channel activity by targeting intersectin 1. Am J Physiol Renal Physiol. 2014;306:F53–60.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Lou YL, Wu J, et al. Upregulation of microRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res. 2012;35:182–91.

    Article  PubMed  Google Scholar 

  • Lorenzen JM, Kielstein JT, Hafer C, et al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2011a;6:1540–6.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen JM, Volkmann I, Fiedler J, et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant. 2011b;11:2221–7.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Kwan BC, Lai FM, et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis. Nephrology. 2012;17:346–51.

    Article  CAS  PubMed  Google Scholar 

  • Maluf DG, Dumur CI, Suh JL, et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85:439–49.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mladinov D, Liu Y, Mattson DL, et al. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase β1. Nucleic Acids Res. 2013;41:1273–83.

    Article  CAS  PubMed  Google Scholar 

  • Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 2010;184:6733–81.

    Google Scholar 

  • Pan Y, Jia T, Zhang Y, et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine. 2012;7:5957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Brors B, Srivastava PK, et al. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics. 2008;9:624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Qin S, Ho J, et al. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst Biol. 2011;5:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papagregoriou G, Erguler K, Dweep H, et al. A miR-1207-5p binding site polymorphism abolishes regulation of HBEGF and is associated with disease severity in CFHR5 nephropathy. PLoS ONE. 2012;7:e31021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel V, Hajarnis S, Williams D, et al. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol. 2012;23:1941–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel V, Williams D, Hajarnis S, et al. miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci U S A. 2013;110:10765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putta S, Lanting L, Sun G, et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23:458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Chung AC, Huang XR, et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22:1462–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikumar J, Hoffmann D, Kim TM, et al. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci. 2012;129:256–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scian MJ, Maluf DG, David KG, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant. 2011;11:2110–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sequeira-Lopez ML, Weatherford ET, Borges GR, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21:460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serino G, Sallustio F, Cox SN, et al. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol. 2012;23:814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serino G, Sallustio F, Curci C, et al. Role of let-7b in the deregulation process of IgA1 glycosylation in IgA nephropathy. Nephrol Dial Transplant. 2015;30:1132–9.

    Article  PubMed  Google Scholar 

  • Shapiro MD, Bagley J, Latz J, et al. MicroRNA expression data reveals a signature of kidney damage following ischemia reperfusion injury. PLoS One. 2011;6:e23011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Yu L, Chiu C, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19:2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinetti G, Fortunato O, Caporali A, et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res. 2013;112:335–46.

    Article  CAS  PubMed  Google Scholar 

  • Stagakis E, Bertsias G, Verginis P, et al. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis. 2011;70:1496–506.

    Article  CAS  PubMed  Google Scholar 

  • Sui W, Liu F, Chen J, et al. Microarray technology for analysis of microRNA expression in renal biopsies of lupus nephritis patients. Methods Mol Biol. 2014;1134:211–20.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Koo S, White N, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 2004;32:e188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H, Li QW, Lv XY, et al. MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol Biol Rep. 2010;37:2951–8.

    Article  CAS  PubMed  Google Scholar 

  • Te JL, Dozmorov IM, Guthridge JM, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 2010;5:e10344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res. 2008;18:404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran U, Zakin L, Schweickert A, et al. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development. 2010;137:1107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6:851–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Kwan BC, Lai FM, et al. Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab Invest. 2010a;90:98–103.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Tam LS, Li EK, et al. Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol. 2010b;37:2516–22.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Tam LS, Li EK, et al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 2010c;20:493–500.

    Article  Google Scholar 

  • Wang H, Peng W, Ouyang X, et al. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl Res. 2012;160:198–206.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Kwan BC, Lai FM, et al. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin Chim Acta. 2013;418:5–11.

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Bhatt K, He HZ, Mi QS, Haase VH, Dong Z. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J Am Soc Nephrol. 2010;21:756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilflingseder J, Regele H, Perco P, et al. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation. 2013;95:835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilflingseder J, Sunzenauer J, Toronyi E, et al. Molecular pathogenesis of post-transplant acute kidney injury: assessment of whole-genome mRNA and miRNA profiles. PLoS One. 2014;9:e104164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zheng C, Fan Y, et al. Downregulation of microRNA-30 facilitates podocyte injury and is prevented by glucocorticoids. J Am Soc Nephrol. 2014;25:92–104.

    Article  CAS  PubMed  Google Scholar 

  • Zarjou A, Yang S, Abraham E, Agarwal A, et al. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301:F793–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhang C, Chen H, et al. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin J Am Soc Nephrol. 2014;9:1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Tang Y, Qu B, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthr Rheum. 2010;62:3425–35.

    Article  CAS  Google Scholar 

  • Zhao S, Wang Y, Liang Y, et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthr Rheum. 2011;63:1376–86.

    Article  CAS  Google Scholar 

  • Zhou H, Hasni SA, Perez P, et al. MiR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J Am Soc Nephrol. 2013;24:1073–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolo Schena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Serino, G., Sallustio, F., Schena, F.P. (2016). MicroRNAs in Kidney Diseases. In: Patel, V., Preedy, V. (eds) Biomarkers in Kidney Disease. Biomarkers in Disease: Methods, Discoveries and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7699-9_40

Download citation

Publish with us

Policies and ethics