Skip to main content

Advertisement

Log in

MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To identify the possible microRNAs (miRNAs) which target the polycystic kidney disease-2 gene (PKD2), and clarify effects of the miRNAs on PKD2. We preliminarily used bioinformatics to analyze 3′UTR (3′untranslated regions) of PKD1 and PKD2 in order to predict the potential microRNAs targeted on them. Subsequently, the stable cell lines with overexpression of microRNA-17 (miR-17) were screened, and luciferase assay combined with the mutation 3′UTR of PKD2 were performed to verify PKD2 is the target of miR-17. Moreover, RT-PCR and Western Blotting were used to determine the post-transcriptionally regulation of PKD2 by miR-17. Finally, MTT cell assays allied with PKD2 rescued strategy were employed to evaluate cell proliferation effects. Our study firstly found that the 3′UTR of PKD2 was more conservation than that of PKD1, and microRNA-17 directly targets the 3′UTR of PKD2 and post-transcriptionally repress the expression of PKD2. Moreover, our findings also demonstrated that overexpression of miR-17 may promote cell proliferation via post-transcriptionally repression of PKD2 in HEK 293T. This suggested that microRNA might be a novel mechanism for cystogenesis as well as a potential therapeutic target for the cell proliferation of autosomal dominant polycystic kidney disease (ADPKD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369:1287–1301

    Article  PubMed  Google Scholar 

  2. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Google Scholar 

  3. Harris PC (2002) Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr Opin Nephrol Hypertens 11:309–314

    Article  PubMed  Google Scholar 

  4. Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S (1999) Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 274:28557–28565

    Article  CAS  PubMed  Google Scholar 

  5. Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 103:5466–5471

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, Maeda Y, Le TC, Hou H Jr, Kucherlapati R, Edelmann W, Somlo S (1998) Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93:177–188

    Article  CAS  PubMed  Google Scholar 

  7. Wu G, Tian X, Nishimura S, Markowitz GS, D’Agati V, Park JH, Yao L, Li L, Geng L, Zhao H, Edelmann W, Somlo S (2002) Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease. Hum Mol Genet 11:1845–1854

    Article  CAS  PubMed  Google Scholar 

  8. Delmas P, Padilla F, Osorio N, Coste B, Raoux M, Crest M (2004) Polycystins, calcium signaling, and human diseases. Biochem Biophys Res Commun 322:1374–1383

    Article  CAS  PubMed  Google Scholar 

  9. Reynolds DM, Hayashi T, Cai Y, Veldhuisen B, Watnick TJ, Lens XM, Mochizuki T, Qian F, Maeda Y, Li L, Fossdal R, Coto E, Wu G, Breuning MH, Germino GG, Peters DJ, Somlo S (1999) Aberrant splicing in the PKD2 gene as a cause of polycystic kidney disease. J Am Soc Nephrol 10:2342–2351

    CAS  PubMed  Google Scholar 

  10. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  CAS  PubMed  Google Scholar 

  11. Proudfoot NJ, Furger A, Dye MJ (2002) Integrating mRNA processing with transcription. Cell 108:501–512

    Article  CAS  PubMed  Google Scholar 

  12. Carthew RW (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16:203–208

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    Article  CAS  PubMed  Google Scholar 

  14. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    Article  CAS  PubMed  Google Scholar 

  15. Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222

    Article  CAS  PubMed  Google Scholar 

  16. Arnaout MA (2001) Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Annu Rev Med 52:93–123

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Zhang Z, Lv XY, Wang YD, Hu ZG, Sun H, Tan RZ, Liu YH, Bian GH, Xiao Y, Li QW, Yang QT, Ai JZ, Feng L, Yang Y, Wei YQ, Zhou Q (2008) Expression of Pkd2l2 in testis is implicated in spermatogenesis. Biol Pharm Bull 31:1496–1500

    Article  CAS  PubMed  Google Scholar 

  18. Wang YD, Bian GH, Lv XY, Zheng R, Sun H, Zhang Z, Chen Y, Li QW, Xiao Y, Yang QT, Ai JZ, Wei YQ, Zhou Q (2008) TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G(1)- to S-phase transition. BMB Rep 41:733–738

    CAS  PubMed  Google Scholar 

  19. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    Article  CAS  PubMed  Google Scholar 

  20. Obernosterer G, Leuschner PJ, Alenius M, Martinez J (2006) Post-transcriptional regulation of microRNA expression. RNA 12:1161–1167

    Article  CAS  PubMed  Google Scholar 

  21. Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Arch 452:1–10

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Stallings RL (2007) Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67:976–983

    Article  CAS  PubMed  Google Scholar 

  23. Ye C, Sun H, Guo W, Wei Y, Zhou Q (2009) Molecular evolution of PKD2 gene family in mammals. Genetica 137:77–86

    Article  CAS  PubMed  Google Scholar 

  24. Farazi TA, Juranek SA, Tuschl T (2008) The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 135:1201–1214

    Article  CAS  PubMed  Google Scholar 

  25. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  26. Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    Article  CAS  PubMed  Google Scholar 

  27. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  28. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  29. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102:13212–13217

    Article  CAS  PubMed  Google Scholar 

  30. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  31. Chen PY, Meister G (2005) microRNA-guided posttranscriptional gene regulation. Biol Chem 386:1205–1218

    Article  CAS  PubMed  Google Scholar 

  32. Engels BM, Hutvagner G (2006) Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25:6163–6169

    Article  CAS  PubMed  Google Scholar 

  33. Pickering MT, Stadler BM, Kowalik TF (2009) miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene 28:140–145

    Google Scholar 

  34. Hanaoka K, Guggino WB (2000) cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol 11:1179–1187

    CAS  PubMed  Google Scholar 

  35. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310:442–453

    Article  CAS  PubMed  Google Scholar 

  36. Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR, Kolle G, Gabrielli B, Grimmond SM (2008) The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 9:R127

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the National Key Basic Research Program of China to Qin Zhou (2005CB522506) and a grant of the National Key Basic Research Program of China to academician Yuquan Wei (2004CB518800). Dr. Qin Zhou was a recipient of the Initial Foundation of M.O.E. for Returned Overseas Students (20071108-18-18) and a scholarship of the Creative Foundation of Sichuan University. The work was also supported by a grant of the S&T Bureau of Sichuan Province to Qin Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhou.

Additional information

H. Sun and Q.-W. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Li, QW., Lv, XY. et al. MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol Biol Rep 37, 2951–2958 (2010). https://doi.org/10.1007/s11033-009-9861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9861-3

Keywords

Navigation