Skip to main content

Vipericidins, Snake Venom Cathelicidin-Related Peptides, in the Milieu of Reptilian Antimicrobial Polypeptides

  • Reference work entry
  • First Online:
Snake Venoms

Part of the book series: Toxinology ((TOXI))

Abstract

After the “antibiotic age” we are experiencing a “post-antibiotic era”, in which our current antimicrobial arsenal is expiring. In addition, drug-resistant infectious diseases have emerged and reemerged. Antimicrobial peptides (AMPs) arose as an alternative to classical antibiotic drugs. AMPs are selective membrane-active compounds with a wide spectrum of action against bacteria, fungi, parasites, and viruses. Due to their properties, AMPs are also effective as anticancer peptides and some AMPs can connect the innate and acquired immunity. To date, thousands of sequences have been described from a wide range of phyla. In reptilians, the predominant classes of AMPs that have been found until now encompass β-defensins and the cathelicidins. Cathelicidin-related antimicrobial peptides (CRAMPs) have been characterized from Asian elapids and South American pit vipers. Vipericidins from rattlesnakes and jararacas and elapid CRAMPs from cobra and kraits consist of a signal peptide, a conserved cathelin domain, and variable carboxyl-terminal sequences of linear α-helical peptides, from where the antimicrobials are released. Full and short synthetic versions of vipericidins and elapid CRAMPs have been prepared and possess a distinct efficacy toward microbial and transformed malignant cells. Although not belonging to the class of the AMPs, venom polypeptides with biocide activity comprise enzymatic toxins (e.g., PLA2) and nonenzymatic waprins. Altogether, animal venom constitutes a rich source for the disclosure of AMPs with diverse sequences and multiple functions. Given the current knowledge, venom-derived AMPs offer a multitude of possibilities for understanding the evolution of this immune-effector molecule and for generating engineered peptides by de novo design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alibardi L. Granulocytes of reptilian sauropsids contain beta-defensin-like peptides: a comparative ultrastructural survey. J Morphol. 2013a;274(8):877–86.

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L. Immunolocalization of a beta-defensin (Tu-BD-1) in the skin and subdermal granulocytes of turtles indicate the presence of an antimicrobial skin barrier. Ann Anat. 2013b;195(6):554–61.

    Article  Google Scholar 

  • Alibardi L. Ultrastructural immunolocalization of chatelicidin-like peptides in granulocytes of normal and regenerating lizard tissues. Acta Histochem. 2014;116(2):363–71.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez CA, Guzmán F, Cárdenas C, Marshall SH, Mercado L. Antimicrobial activity of trout hepcidin. Fish Shellfish Immunol. 2014;41(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  • Amiche M, Seon AA, Pierre TN, Nicolas P. The dermaseptin precursors: a protein family with a common preproregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1999;456(3):352–6.

    Article  CAS  PubMed  Google Scholar 

  • Andreu D, Rivas L. Animal antimicrobial peptides: an overview. Biopolymers. 1998;47(6):415–33.

    Article  CAS  PubMed  Google Scholar 

  • Arias M, McDonald LJ, Haney EF, Nazmi K, Bolscher JG, Vogel HJ. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs. Biometals. 2014;27(5):935–48.

    Article  CAS  PubMed  Google Scholar 

  • Bąbolewska E, Brzezińska-Błaszczyk E. Human-derived cathelicidin LL-37 directly activates mast cells to proinflammatory mediator synthesis and migratory response. Cell Immunol. 2015;293(2):67–73.

    Article  PubMed  CAS  Google Scholar 

  • Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6(12):1543–75.

    Article  CAS  Google Scholar 

  • Banigan JR, Mandal K, Sawaya MR, Thammavongsa V, Hendrickx AP, Schneewind O, Yeates TO, Kent SB. Determination of the X-ray structure of the snake venom protein omwaprin by total chemical synthesis and racemic protein crystallography. Protein Sci. 2010;19(10):1840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batycka-Baran A, Maj J, Wolf R, Szepietowski JC. The new insight into the role of antimicrobial proteins-alarmins in the immunopathogenesis of psoriasis. J Immunol Res. 2014;2014:628289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell M. Antibiotic misuse: a global crisis. JAMA Intern Med. 2014;174(12):1920–1.

    Article  PubMed  Google Scholar 

  • Benato F, Dalla Valle L, Skobo T, Alibardi L. Biomolecular identification of beta-defensin-like peptides from the skin of the soft-shelled turtle Apalone spinifera. J Exp Zool B Mol Dev Evol. 2013;320(4):210–7.

    Article  CAS  PubMed  Google Scholar 

  • Bende NS, Dziemborowicz S, Herzig V, Ramanujam V, Brown GW, Bosmans F, Nicholson GM, King GF, Mobli M. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop. FEBS J. 2015. doi:10.1111/febs.13189 [Epub ahead of print].

    PubMed  Google Scholar 

  • Boman HG. Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol. 1998;48(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  • Bommineni YR, Pham GH, Sunkara LT, Achanta M, Zhang G. Immune regulatory activities of fowlicidin-1, a cathelicidin host defense peptide. Mol Immunol. 2014;59(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA, Ackermann M, McCray PB Jr, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents. 2003;22(5):465–478.

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238–50.

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA, De Lucca AJ, Bland J, Elliott S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci U S A. 1996;93(1):412–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucki R, Leszczyńska K, Namiot A, Sokołowski W. Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp (Warsz). 2010;58(1):15–25.

    Article  CAS  Google Scholar 

  • Cecilio AB, Caldas S, Oliveira RA, Santos AS, Richardson M, Naumann GB, Schneider FS, Alvarenga VG, Estevão-Costa MI, Fuly AL, Eble JA, Sanchez EF. Molecular characterization of Lys49 and Asp49 phospholipases A2 from snake venom and their antiviral activities against Dengue virus. Toxins (Basel). 2013;5(10):1780–98.

    Article  CAS  Google Scholar 

  • Chan LY, Zhang VM, Huang YH, Waters NC, Bansal PS, Craik DJ, Daly NL. Cyclization of the antimicrobial peptide gomesin with native chemical ligation: influences on stability and bioactivity. Chembiochem. 2013;14(5):617–24.

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Sinha NK, Banerjee S, Roy D, Chattopadhyay D, Roy S. Small cationic protein from a marine turtle has beta-defensin-like fold and antibacterial and antiviral activity. Proteins. 2006;64(2):524–31.

    Article  CAS  PubMed  Google Scholar 

  • Chen LW, Kao PH, Fu YS, Hu WP, Chang LS. Bactericidal effect of Naja nigricollis toxin γ is related to its membrane-damaging activity. Peptides. 2011a;32(8):1755–63.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yang B, Zhou H, Sun L, Dou J, Qian H, Huang W, Mei Y, Han J. Structure-activity relationships of a snake cathelicidin-related peptide, BF-15. Peptides. 2011b;32(12):2497–503.

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Hayashi MA, Oliveira EB, Karpel RL. DNA-interactive properties of crotamine, a cell-penetrating polypeptide and a potential drug carrier. PLoS One. 2012;7(11):e48913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Hu J, Zeng P, Pan F, Yaseen M, Xu H, Lu JR. Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials. 2014;35(5):1552–61.

    Article  CAS  PubMed  Google Scholar 

  • Chileveru HR, Lim SA, Chairatana P, Wommack AJ, Chiang IL, Nolan EM. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry 2015;54(9):1767–1777.

    Google Scholar 

  • Correa PG, Oguiura N. Phylogenetic analysis of β-defensin-like genes of Bothrops, Crotalus and Lachesis snakes. Toxicon. 2013;69:65–74.

    Article  CAS  PubMed  Google Scholar 

  • Craik DJ. Chemistry. Seamless proteins tie up their loose ends. Science. 2006;311(5767):1563–4.

    Article  PubMed  Google Scholar 

  • Dalla Valle L, Benato F, Maistro S, Quinzani S, Alibardi L. Bioinformatic and molecular characterization of beta-defensins-like peptides isolated from the green lizard Anolis carolinensis. Dev Comp Immunol. 2012;36(1):222–9.

    Article  CAS  PubMed  Google Scholar 

  • Dash AP, Bhatia R, Sunyoto T, Mourya DT. Emerging and re-emerging arboviral diseases in Southeast Asia. J Vector Borne Dis. 2013;50(2):77–84.

    CAS  PubMed  Google Scholar 

  • de Latour FA, Amer LS, Papanstasiou EA, Bishop BM, van Hoek ML. Antimicrobial activity of the Naja atra cathelicidin and related small peptides. Biochem Biophys Res Commun. 2010;396(4):825–30.

    Article  PubMed  CAS  Google Scholar 

  • Dennison SR, Morton LH, Phoenix DA. Effect of amidation on the antimicrobial peptide aurein 2.5 from Australian southern bell frogs. Protein Pept Lett. 2012;19(6):586–91.

    Article  CAS  PubMed  Google Scholar 

  • Dewick PM. Medicinal natural products: a biosynthetic approach. 2nd ed. New York: Wiley; 2009.

    Book  Google Scholar 

  • Falcao CB, de La Torre BG, Pérez-Peinado C, Barron AE, Andreu D, Rádis-Baptista G. Vipericidins: a novel family of cathelicidin-related peptides from the venom gland of South American pit vipers. Amino Acids. 2014;46:2561–71.

    Article  CAS  PubMed  Google Scholar 

  • Felnagle EA, Jackson EE, Chan YA, Podevels AM, Berti AD, McMahon MD, Thomas MG. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol Pharm. 2008;5(2):191–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenard D, Lambeau G, Valentin E, Lefebvre JC, Lazdunski M, Doglio A. Secreted phospholipases A(2), a new class of HIV inhibitors that block virus entry into host cells. J Clin Invest. 1999;104(5):611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forum on Microbial Threats, Board on Global Health, Institute of Medicine. The influence of global environmental change on infectious disease dynamics: workshop summary. Washington, DC: National Academies Press; 2014.

    Google Scholar 

  • Fry B, Vidal N, Norman J, Vonk F, Scheib H, Ramjan S, Kuruppu S, Fung K, Hedges S, Richardson M, et al. Early evolution of the venom system in lizards and snakes. Nature. 2006;439:584–8.

    Article  CAS  PubMed  Google Scholar 

  • Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–20.

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76(4):1427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganz T, Selsted ME, Lehrer RI. Defensins. Eur J Haematol. 1990;44(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review. Front Microbiol. 2013;4:294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guarnieri MC, et al. Cloning of a novel acidic phospholipase A2 from the venom gland of Crotalus durissus cascavella (Brazilian northeastern rattlesnake). J Venomous Anim Toxins Incl Trop Dis. 2009;15(4):746.

    Google Scholar 

  • Guo C, Liu S, Yao Y, Zhang Q, Sun MZ. Past decade study of snake venom L-amino acid oxidase. Toxicon. 2012;60(3):302–11.

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Li YW, Xie MQ, Li AX. Molecular cloning, recombinant expression and antibacterial activity analysis of hepcidin from Simensis crocodile (Crocodylus siamensis). Comp Biochem Physiol B Biochem Mol Biol. 2012;163(3–4):309–15.

    Article  CAS  PubMed  Google Scholar 

  • Hao Q, Wang H, Wang J, Dou J, Zhang M, Zhou W, Zhou C. Effective antimicrobial activity of Cbf-K16 and Cbf-A7 A13 against NDM-1-carrying Escherichia coli by DNA binding after penetrating the cytoplasmic membrane in vitro. J Pept Sci. 2013;19(3):173–80.

    Article  CAS  PubMed  Google Scholar 

  • Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009;10:585–606.

    Article  CAS  PubMed  Google Scholar 

  • Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol. 2005;35(11–12):1309–18.

    Article  CAS  PubMed  Google Scholar 

  • Harwig SS, Swiderek KM, Kokryakov VN, Tan L, Lee TD, Panyutich EA, Aleshina GM, Shamova OV, Lehrer RI. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 1994;342(3):281–5.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi MA, Nascimento FD, Kerkis A, Oliveira V, Oliveira EB, Pereira A, Rádis-Baptista G, Nader HB, Yamane T, Kerkis I, Tersariol IL. Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon. 2008;52(3):508–17.

    Article  CAS  PubMed  Google Scholar 

  • Hetru C, Letellier L, Oren Z, Hoffmann JA, Shai Y. Androctonin, a hydrophilic disulphide-bridged non-haemolytic anti-microbial peptide: a plausible mode of action. Biochem J. 2000;345:653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778(2):357–75.

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Lu L, Shao X, Tang C, Zhao X. Anti-melanoma activity of hybrid peptide P18 and its mechanism of action. Biotechnol Lett. 2010;32(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  • Imler JL, Bulet P. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy. 2005;86:1–21.

    Article  CAS  PubMed  Google Scholar 

  • Jarvis LM. A bacterial battle. Chem Eng News. 2014;92(24):9–14.

    Article  Google Scholar 

  • Juba M, Porter D, Dean S, Gillmor S, Bishop B. Characterization and performance of short cationic antimicrobial peptide isomers. Biopolymers. 2013;100(4):387–401.

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol. 2004;56(3):285–9.

    Article  CAS  PubMed  Google Scholar 

  • Kerkis A, Kerkis I, Rádis-Baptista G, Oliveira EB, Vianna-Morgante AM, Pereira LV, Yamane T. Crotamine is a novel cell-penetrating protein from the venom of rattlesnake Crotalus durissus terrificus. FASEB J. 2004;18(12):1407–9.

    CAS  PubMed  Google Scholar 

  • Kerkis I, Silva Fde S, Pereira A, Kerkis A, Rádis-Baptista G. Biological versatility of crotamine–a cationic peptide from the venom of a South American rattlesnake. Expert Opin Investig Drugs. 2010;19(12):1515–25.

    Article  CAS  PubMed  Google Scholar 

  • Kerkis I, Hayashi MA, Prieto da Silva AR, Pereira A, De Sá Júnior PL, Zaharenko AJ, Rádis-Baptista G, Kerkis A, Yamane T. State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. Biomed Res Int. 2014;2014:675985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim JY, Park SC, Yoon MY, Hahm KS, Park Y. C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria. Amino Acids. 2011;40(1):183–95.

    Article  CAS  PubMed  Google Scholar 

  • Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993;327(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  • Krauson AJ, He J, Wimley WC. Determining the mechanism of membrane permeabilizing peptides: identification of potent, equilibrium pore-formers. Biochim Biophys Acta. 2012;1818(7):1625–32.

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schröder JM, Liu YJ, Gilliet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449(7162):564–9.

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Lee DG. Magainin 2 induces bacterial cell death showing apoptotic properties. Curr Microbiol. 2014;69(6):794–801.

    Article  CAS  PubMed  Google Scholar 

  • Lee ML, Tan NH, Fung SY, Sekaran SD. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Comp Biochem Physiol C Toxicol Pharmacol. 2011;153(2):237–42.

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Hwang JS, Lee J, Kim JI, Lee DG. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim Biophys Acta. 2015;1848(2):634–42.

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunol Rev. 2012;245(1):84–112.

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Cole AM, Selsted ME. θ-Defensins: cyclic peptides with endless potential. J Biol Chem. 2012;287(32):27014–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Tailhades J, O’Brien-Simpson NM, Separovic F, Otvos Jr L, Hossain MA, Wade JD. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids. 2014;46(10):2287–94.

    Article  CAS  PubMed  Google Scholar 

  • Li-Lee M, Chung I, Yee Fung S, Kanthimathi MS, Hong Tan N. Antiproliferative activity of king cobra (Ophiophagus hannah) venom L-amino acid oxidase. Basic Clin Pharmacol Toxicol. 2014;114(4):336–43.

    Article  PubMed  CAS  Google Scholar 

  • Mak P, Siwek M, Pohl J, Dubin A. Menstrual hemocidin HbB115-146 is an acidophilic antibacterial peptide potentiating the activity of human defensins, cathelicidin and lysozyme. Am J Reprod Immunol. 2007;57(1):81–91.

    Article  CAS  PubMed  Google Scholar 

  • Mandard N, Sodano P, Labbe H, Bonmatin JM, Bulet P, Hetru C, Ptak M, Vovelle F. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. Eur J Biochem. 1998;256(2):404–10.

    Article  CAS  PubMed  Google Scholar 

  • Melino S, Santone C, Di Nardo P, Sarkar B. Histatins: salivary peptides with copper(II)- and zinc(II)-binding motifs: perspectives for biomedical applications. FEBS J. 2014;281(3):657–72.

    Article  CAS  PubMed  Google Scholar 

  • Méndez-Samperio P. Recent advances in the field of antimicrobial peptides in inflammatory diseases. Adv Biomed Res. 2013;2:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, Blum M, Rüsch-Gerdes S, Mokrousov I, Aleksic E, Allix-Béguec C, Antierens A, Augustynowicz-Kopeć E, Ballif M, Barletta F, Beck HP, Barry 3rd CE, Bonnet M, Borroni E, Campos-Herrero I, Cirillo D, Cox H, Crowe S, Crudu V, Diel R, Drobniewski F, Fauville-Dufaux M, Gagneux S, Ghebremichael S, Hanekom M, Hoffner S, Jiao WW, Kalon S, Kohl TA, Kontsevaya I, Lillebæk T, Maeda S, Nikolayevskyy V, Rasmussen M, Rastogi N, Samper S, Sanchez-Padilla E, Savic B, Shamputa IC, Shen A, Sng LH, Stakenas P, Toit K, Varaine F, Vukovic D, Wahl C, Warren R, Supply P, Niemann S, Wirth T. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015. doi:10.1038/ng.3195 [Epub ahead of print].

    PubMed  Google Scholar 

  • Metz-Boutigue MH, Kieffer AE, Goumon Y, Aunis D. Innate immunity: involvement of new neuropeptides. Trends Microbiol. 2003;11(12):585–92.

    Article  CAS  PubMed  Google Scholar 

  • Molhoek EM, van Dijk A, Veldhuizen EJ, Haagsman HP, Bikker FJ. Improved proteolytic stability of chicken cathelicidin-2 derived peptides by D-amino acid substitutions and cyclization. Peptides. 2011;32(5):875–80.

    Article  CAS  PubMed  Google Scholar 

  • Morishima I, Suginaka S, Ueno T, Hirano H. Isolation and structure of cecropins, inducible antibacterial peptides, from the silkworm, Bombyx mori. Comp Biochem Physiol B. 1990;95(3):551–4.

    CAS  PubMed  Google Scholar 

  • Muller VD, Soares RO, dos Santos NN, Trabuco Jr AC, Cintra AC, Figueiredo LT, Caliri A, Sampaio SV, Aquino VH. Phospholipase A2 isolated from the venom of Crotalus durissus terrificus inactivates dengue virus and other enveloped viruses by disrupting the viral envelope. PLoS One. 2014;9(11):e112351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nair DG, Fry BG, Alewood P, Kumar PP, Kini RM. Antimicrobial activity of omwaprin, a new member of the waprin family of snake venom proteins. Biochem J. 2007;402(1):93–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa Y, Gallo RL. Endogenous intracellular cathelicidin enhances TLR9 activation in dendritic cells and macrophages. J Immunol. 2015;194(3):1274–84.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus) Isolation and chemical structure. J Biol Chem. 1988;263(32):16709–13.

    CAS  PubMed  Google Scholar 

  • Nascimento FD, Hayashi MA, Kerkis A, Oliveira V, Oliveira EB, Rádis-Baptista G, Nader HB, Yamane T, Tersariol IL, Kerkis I. Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. J Biol Chem. 2007;282(29):21349–60.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas P, El Amri C. The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochim Biophys Acta. 2009;1788(8):1537–50.

    Article  CAS  PubMed  Google Scholar 

  • Oguiura N, Boni-Mitake M, Affonso R, Zhang G. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. J Antibiot (Tokyo). 2011;64(4):327–31.

    Article  CAS  Google Scholar 

  • Ooi EE, Gubler DJ. Global spread of epidemic dengue, the influence of environmental change. Futur Virol. 2009;4:571–80.

    Article  Google Scholar 

  • Otvos Jr L. Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci. 2005;11(11):697–706.

    Article  CAS  PubMed  Google Scholar 

  • Otvos Jr L, Insug O, Rogers ME, et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry. 2000;39:14150–9.

    Article  CAS  PubMed  Google Scholar 

  • Padovan L, Scocchi M, Tossi A. Structural aspects of plant antimicrobial peptides. Curr Protein Pept Sci. 2010;11(3):210–9.

    Article  CAS  PubMed  Google Scholar 

  • Parish CA, Jiang H, Tokiwa Y, Berova N, Nakanishi K, McCabe D, Zuckerman W, Xia MM, Gabay JE. Broad-spectrum antimicrobial activity of hemoglobin. Bioorg Med Chem. 2001;9(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  • Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998;244(1):253–7.

    Article  CAS  PubMed  Google Scholar 

  • Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T, Thammasirirak S. Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Dev Comp Immunol. 2011;35(5):545–53.

    Article  CAS  PubMed  Google Scholar 

  • Paulsen VS, Blencke HM, Benincasa M, Haug T, Eksteen JJ, Styrvold OB, Scocchi M, Stensvåg K. Structure-activity relationships of the antimicrobial peptide arasin 1 – and mode of action studies of the N-terminal, proline-rich region. PLoS One. 2013;8(1):e53326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne JW, Jakes R, Hartley BS. The primary structure of alamethicin. Biochem J. 1970;117(4):757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peigneur S, Orts DJ, Prieto da Silva AR, Oguiura N, Boni-Mitake M, de Oliveira EB, Zaharenko AJ, de Freitas JC, Tytgat J. Crotamine pharmacology revisited: novel insights based on the inhibition of KV channels. Mol Pharmacol. 2012;82(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  • Pereira A, Kerkis A, Hayashi MA, Pereira AS, Silva FS, Oliveira EB, Prieto da Silva AR, Yamane T, Rádis-Baptista G, Kerkis I. Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opin Investig Drugs. 2011;20(9):1189–200.

    Article  CAS  PubMed  Google Scholar 

  • Perumal Samy R, Gopalakrishnakone P, Bow H, Puspharaj PN, Chow VT. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: novel bactericidal and membrane damaging activities. Biochimie. 2010;92(12):1854–66.

    Article  CAS  PubMed  Google Scholar 

  • Perumal Samy R, Gopalakrishnakone P, Thwin MM, Chow TK, Bow H, Yap EH, Thong TW. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol. 2007;102(3):650–659.

    Article  CAS  PubMed  Google Scholar 

  • Rádis-Baptista G, Kerkis I. Crotamine, a small basic polypeptide myotoxin from rattlesnake venom with cell-penetrating properties. Curr Pharm Des. 2011;17(38):4351–61.

    Article  PubMed  Google Scholar 

  • Rádis-Baptista G, de la Torre BG, Andreu D. A novel cell-penetrating peptide sequence derived by structural minimization of a snake toxin exhibits preferential nucleolar localization. J Med Chem. 2008;51(22):7041–4.

    Article  PubMed  CAS  Google Scholar 

  • Rádis-Baptista G, de la Torre BG, Andreu D. Insights into the uptake mechanism of NrTP, a cell-penetrating peptide preferentially targeting the nucleolus of tumour cells. Chem Biol Drug Des. 2012;79(6):907–15.

    Article  PubMed  CAS  Google Scholar 

  • Rima M, Accary C, Haddad K, Sadek R, Hraoui-Bloquet S, Desfontis JC, Fajloun Z. Identification of L-amino acid oxidase (Mb-LAAO) with antibacterial activity in the venom of Montivipera bornmuelleri, a viper from Lebanon. Infect Disord Drug Targets. 2013;13(5):337–43.

    Article  CAS  PubMed  Google Scholar 

  • Rink R, Arkema-Meter A, Baudoin I, Post E, Kuipers A, Nelemans SA, Akanbi MH, Moll GN. To protect peptide pharmaceuticals against peptidases. J Pharmacol Toxicol Methods. 2010;61(2):210–8.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues M, de la Torre BG, Rádis-Baptista G, Santos NC, Andreu D. Efficient cellular delivery of β-galactosidase mediated by NrTPs, a new family of cell-penetrating peptides. Bioconjug Chem. 2011;22(11):2339–44.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues M, Santos A, de la Torre BG, Rádis-Baptista G, Andreu D, Santos NC. Molecular characterization of the interaction of crotamine-derived nucleolar targeting peptides with lipid membranes. Biochim Biophys Acta. 2012;1818(11):2707–17.

    Article  CAS  PubMed  Google Scholar 

  • Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem. 1988;263(20):9573–5.

    CAS  PubMed  Google Scholar 

  • Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol. 2005;77(4):466–75.

    Article  CAS  PubMed  Google Scholar 

  • Salazar VA, Rubin J, Moussaoui M, Pulido D, Nogués MV, Venge P, Boix E. Protein post-translational modification in host defense: the antimicrobial mechanism of action of human eosinophil cationic protein native forms. FEBS J. 2014;281(24):5432–46.

    Article  CAS  PubMed  Google Scholar 

  • Samel M, Tõnismägi K, Rönnholm G, Vija H, Siigur J, Kalkkinen N, Siigur E. L-Amino acid oxidase from Naja naja oxiana venom. Comp Biochem Physiol B Biochem Mol Biol. 2008;149(4):572–80.

    Article  PubMed  CAS  Google Scholar 

  • Samy RP, Gopalakrishnakone P, Stiles BG, Girish KS, Swamy SN, Hemshekhar M, Tan KS, Rowan EG, Sethi G, Chow VT. Snake venom phospholipases A(2): a novel tool against bacterial diseases. Curr Med Chem. 2012;19(36):6150–62.

    Article  CAS  PubMed  Google Scholar 

  • Samy RP, Kandasamy M, Gopalakrishnakone P, Stiles BG, Rowan EG, Becker D, Shanmugam MK, Sethi G, Chow VT. Wound healing activity and mechanisms of action of an antibacterial protein from the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). PLoS One. 2014;9(2):e80199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta. 2006;1761(11):1246–59.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature. 2011;469(7330):419–23.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer F. Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol. 2009;625(1–3):190–4.

    Article  CAS  PubMed  Google Scholar 

  • Scocchi M, Tossi A, Gennaro R. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol Life Sci. 2011;68(13):2317–30.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Pohane AA, Bansal S, Bajaj A, Jain V, Srivastava A. Cell penetrating synthetic antimicrobial peptides (SAMPs) exhibiting potent and selective killing of Mycobacterium by targeting its DNA. Chemistry. 2015. doi:10.1002/chem.201404650 [Epub ahead of print].

    Google Scholar 

  • Sikorska E, Kamysz E. Effect of head-to-tail cyclization on conformation of histatin-5. J Pept Sci. 2014;20(12):952–7.

    Article  CAS  PubMed  Google Scholar 

  • Slaninová J, Mlsová V, Kroupová H, Alán L, Tůmová T, Monincová L, Borovičková L, Fučík V, Ceřovský V. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides. 2012;33(1):18–26.

    Article  PubMed  CAS  Google Scholar 

  • Song D, Zong X, Zhang H, Wang T, Yi H, Luan C, Wang Y. Antimicrobial peptide Cathelicidin-BF prevents intestinal barrier dysfunction in a mouse model of endotoxemia. Int Immunopharmacol. 2015;25(1):141–7.

    Article  CAS  PubMed  Google Scholar 

  • Srihongthong S, Pakdeesuwan A, Daduang S, Araki T, Dhiravisit A, Thammasirirak S. Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis). Protein J. 2012;31(6):466–76.

    Article  CAS  PubMed  Google Scholar 

  • Stefano GB, Salzet B, Fricchione GL. Enkelytin and opioid peptide association in invertebrates and vertebrates: immune activation and pain. Immunol Today. 1998;19(6):265–8.

    Article  CAS  PubMed  Google Scholar 

  • Stegemann C, Kolobov Jr A, Leonova YF, Knappe D, Shamova O, Ovchinnikova TV, Kokryakov VN, Hoffmann R. Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles. Proteomics. 2009;9(5):1364–73.

    Article  CAS  PubMed  Google Scholar 

  • Strieker M, Tanović A, Marahiel MA. Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol. 2010;20(2):234–40.

    Article  CAS  PubMed  Google Scholar 

  • Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. 1998;160(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Wang H, Li B, Ke M, Wang J, Dou J, Zhou C. The cathelicidin-BF Lys16 mutant Cbf-K16 selectively inhibits non-small cell lung cancer proliferation in vitro. Oncol Rep. 2013;30(5):2502–10.

    CAS  PubMed  Google Scholar 

  • Torres AM, Kuchel PW. The beta-defensin-fold family of polypeptides. Toxicon. 2004;44(6):581–8.

    Article  CAS  PubMed  Google Scholar 

  • Torrice M. Antibacterial boom and bust. Chem Eng News. 2013;91(36):34–37.

    Article  Google Scholar 

  • Tossi A, Sandri L. Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des. 2002;8(9):743–61.

    Article  CAS  PubMed  Google Scholar 

  • Tsomaia N. Peptide therapeutics: targeting the undruggable space. Eur J Med Chem. 2015. doi:10.1016/j.ejmech.2015.01.014 [Epub ahead of print].

    PubMed  Google Scholar 

  • Uzzell T, Stolzenberg ED, Shinnar AE, Zasloff M. Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides. 2003;24(11):1655–1667.

    Article  CAS  PubMed  Google Scholar 

  • van Hoek ML. Antimicrobial peptides in reptiles. Pharmaceuticals (Basel). 2014;7(6):723–53.

    Article  CAS  Google Scholar 

  • Wang G. Post-translational modifications of natural antimicrobial peptides and strategies for peptide engineering. Curr Biotechnol. 2012;1(1):72–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Hong J, Liu X, Yang H, Liu R, Wu J, Wang A, Lin D, Lai R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics. PLoS One. 2008;3:e3217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:D933–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Chen L, Guang H, Li Z, Yang H, Li J, You D, Yu H, Lai R. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris. PLoS One. 2011;6:e22120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zhou Y, Li S, Li H, Tian L, Wang H, Shang D. Anticancer mechanisms of temporin-1CEa, an amphipathic α-helical antimicrobial peptide, in Bcap-37 human breast cancer cells. Life Sci. 2013a;92(20–21):1004–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ke M, Tian Y, Wang J, Li B, Wang Y, Dou J, Zhou C. BF-30 selectively inhibits melanoma cell proliferation via cytoplasmic membrane permeabilization and DNA-binding in vitro and in B16F10-bearing mice. Eur J Pharmacol. 2013b;707(1–3):1–10.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li B, Li Y, Dou J, Hao Q, Tian Y, Wang H, Zhou C. BF-30 effectively inhibits ciprofloxacin-resistant bacteria in vitro and in a rat model of vaginosis. Arch Pharm Res. 2013c;37:927–36.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chan JY, Rêgo JV, Chong CM, Ai N, Falcão CB, Rádis-Baptista G, Lee SM. Rhodamine B-conjugated encrypted vipericidin nonapeptide is a potent toxin to zebrafish and associated with in vitro cytotoxicity. Biochim Biophys Acta. 2015;1850(6):1253–60.

    Article  CAS  PubMed  Google Scholar 

  • Wen YL, Wu BJ, Kao PH, Fu YS, Chang LS. Antibacterial and membrane-damaging activities of β-bungarotoxin B chain. J Pept Sci. 2013;19(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Whittington CM, Papenfuss AT, Bansal P, Torres AM, Wong ES, Deakin JE, Graves T, Alsop A, Schatzkamer K, Kremitzki C, Ponting CP, Temple-Smith P, Warren WC, Kuchel PW, Belov K. Defensins and the convergent evolution of platypus and reptile venom genes. Genome Res. 2008;18(6):986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiens ME, Smith JG. Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection. J Virol. 2015;89(5):2866–74.

    Article  PubMed  CAS  Google Scholar 

  • Wong JH, Ye XJ, Ng TB. Cathelicidins: peptides with antimicrobial, immunomodulatory, anti-inflammatory, angiogenic, anticancer and procancer activities. Curr Protein Pept Sci. 2013;14(6):504–14.

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Zhang L, Wang Y. The antimicrobial peptide cathelicidin-BF could be a potential therapeutic for Salmonella typhimurium infection. Microbiol Res. 2015;171:45–51.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Tamura A. Designing cell-aggregating peptides without cytotoxicity. Biomacromolecules. 2014;15(2):512–23.

    Article  CAS  PubMed  Google Scholar 

  • Yamane ES, Bizerra FC, Oliveira EB, Moreira JT, Rajabi M, Nunes GL, de Souza AO, da Silva ID, Yamane T, Karpel RL, Silva Jr PI, Hayashi MA. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie. 2013;95(2):231–40.

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 2002;23(6):291–6.

    Article  CAS  PubMed  Google Scholar 

  • Yang QZ, Wang C, Lang L, Zhou Y, Wang H, Shang DJ. Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Pharm Res. 2013;36(11):1302–10.

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Yount NY. Unifying themes in host defence effector polypeptides. Nat Rev Microbiol. 2007;5(9):727–40.

    Article  CAS  PubMed  Google Scholar 

  • Yount NY, Kupferwasser D, Spisni A, Dutz SM, Ramjan ZH, Sharma S, Waring AJ, Yeaman MR. Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc Natl Acad Sci U S A. 2009;106(35):14972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaiou M, Gallo RL. Cathelicidins, essential gene-encoded mammalian antibiotics. J Mol Med (Berl). 2002;80(9):549–61.

    Article  CAS  Google Scholar 

  • Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. 2004;75:39–48.

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M. The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol. 2005;7:179–96.

    CAS  PubMed  Google Scholar 

  • Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389–95.

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZT, Zhu SY. Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol Biol. 2009;18(5):549–56.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lu W, Hong M. The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. Biochemistry. 2010;49(45):9770–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH, Zhang Y. Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides. 2008;29:1685–91.

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Wu H, Lu H, Li G, Huang Q. LAMP: a database linking antimicrobial peptides. PLoS One. 2013;8(6):e66557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Dou J, Wang J, Chen L, Wang H, Zhou W, Li Y, Zhou C. The antibacterial activity of BF-30 in vitro and in infected burned rats is through interference with cytoplasmic membrane integrity. Peptides. 2011;32(6):1131–8.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S. Did cathelicidins, a family of multifunctional host-defense peptides, arise from a cysteine protease inhibitor? Trends Microbiol. 2008;16(8):353–60.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Gao B. A fossil antibacterial peptide gives clues to structural diversity of cathelicidin-derived host defense peptides. FASEB J. 2009;23(1):13–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gandhi Rádis-Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Rádis-Baptista, G. (2017). Vipericidins, Snake Venom Cathelicidin-Related Peptides, in the Milieu of Reptilian Antimicrobial Polypeptides. In: Inagaki, H., Vogel, CW., Mukherjee, A., Rahmy, T. (eds) Snake Venoms. Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6410-1_2

Download citation

Publish with us

Policies and ethics