Skip to main content
Log in

Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Recent advances in the search for novel anticancer agents have indicated that the positively charged antimicrobial peptides have emerged as promising agents offering several advantages over the conventional anticancer drugs. As a naturally occurring, cationic, α-helical antimicrobial peptide, temproin-1CEa has been proved to exhibit a potent anticancer effect and a moderate hemolytic activity. In order to reduce the hemolytic activity of temporin-1CEa and improve its anticancer potency towards a range of human breast cancer cells, in the present study, six analogs of temporin-1CEa were rationally designed and synthesized. The amphipathicity levels and α-helical structural patterns of peptides were reserved, while their cationic property and hydrophobicity were changed. The results of MTT and hemolysis assay indicated that the analog peptides displayed an improved anticancer activity and showed an overall optimized therapeutic index. The hydrophobicity of peptides was positively correlated with their hemolytic and antitumor activities. Moreover, the data suggest a strategy of increasing the cationicity while maintaining the moderate hydrophobicity of naturally occurring amphipathic α-helical peptides to generate analogs with improved cytotoxicity against tumor cells but decreased activity against non-neoplastic cells such as human erythrocytes. This work highlights the potential for rational design and synthesis of improved antimicrobial peptides that have the capability to be used therapeutically for treatment of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausbacher, D., G. Svineng, T. Hansen, and M.B. Strøm. 2012. Anticancer mechanisms of action of two small amphipathic β(2,2)-amino acid derivatives derived from antimicrobial peptides. Biochimica et Biophysica Acta 1818: 2917–2925.

    Article  PubMed  CAS  Google Scholar 

  • Carver, T., and A. Bleasby. 2003. The design of Jemboss: A graphical user interface to EMBOSS. Bioinformatics 19: 1837–1843.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., M.T. Guarnieri, A.I. Vasil, M.L. Vasil, C.T. Mant, and R.S. Hodges. 2007. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrobial Agents and Chemotherapy 51: 1398–1406.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., C.T. Mant, and R.S. Hodges. 2002. Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix. Journal of Peptide Research 59: 18–33.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., A.I. Vasil, L. Rehaume, C.T. Mant, J.L. Burns, M.L. Vasil, R.E. Hancock, and R.S. Hodges. 2006. Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chemical Biology & Drug Design 67: 162–173.

    Article  CAS  Google Scholar 

  • Dathe, M., T. Wieprecht, H. Nikolenko, L. Handel, W.L. Maloy, D.L. MacDonald, M. Beyermann, and M. Bienert. 1997. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Letters 403: 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, D., R.M. Weiss, and T.C. Terwilliger. 1982. The helical hydrophobic moment: A measure of the amphiphilicity of a helix. Nature 299: 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R.E., and H.G. Sahl. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology 24: 1551–1557.

    Article  PubMed  CAS  Google Scholar 

  • Hoskin, D.W., and A. Ramamoorthy. 2008. Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta 1778: 357–375.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y.B., X.F. Wang, H.Y. Wang, Y. Liu, and Y. Chen. 2011. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Molecular Cancer Therapeutics 10: 416–426.

    Article  PubMed  CAS  Google Scholar 

  • Jemal, A., R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal, and M.J. Thun. 2006. Cancer statistics. CA: A Cancer Journal for Clinicians 56: 106–130.

    Article  Google Scholar 

  • Jenssen, H., P. Hamill, and R.E. Hancock. 2006. Peptide antimicrobial agents. Clinical Microbiology Reviews 19: 491–511.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Z., A.I. Vasil, L. Gera, M.L. Vasil, and R.S. Hodges. 2011. Rational design of α-helical antimicrobial peptides to target Gram-negative pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of charge, ‘specificity determinants’, total hydrophobicity, hydrophobe type and location as design parameters to improve the therapeutic ratio. Chemical Biology & Drug Design 77: 225–240.

    Article  Google Scholar 

  • Kovacs, J.M., C.T. Mant, and R.S. Hodges. 2006. Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects. Biopolymers 84: 283–297.

    Article  PubMed  CAS  Google Scholar 

  • Leuschner, C., and W. Hansel. 2004. Membrane disrupting lytic peptides for cancer treatments. Current Pharmaceutical Design 10: 2299–2310.

    Article  PubMed  CAS  Google Scholar 

  • Mader, J.S., and D.W. Hoskin. 2006. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opinion on Investigational Drugs 15: 933–946.

    Article  PubMed  CAS  Google Scholar 

  • Mant, C.T., J.M. Kovacs, H.M. Kim, D.D. Pollock, and R.S. Hodges. 2009. Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: Comparison with other hydrophilicity/hydrophobicity scales. Biopolymers 92: 573–595.

    Article  PubMed  CAS  Google Scholar 

  • Papo, N., Z. Oren, U. Pag, H.G. Sahl, and Y. Shai. 2002. The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. Journal of Biological Chemistry 277: 33913–33921.

    Article  PubMed  CAS  Google Scholar 

  • Papo, N., M. Shahar, L. Eisenbach, and Y. Shai. 2003. A novel lytic peptide composed of dl-amino acids selectively kills cancer cells in culture and in mice. Journal of Biological Chemistry 278: 21018–21023.

    Article  PubMed  CAS  Google Scholar 

  • Paredes-Gamero, E.J., M.N. Martins, F.A. Cappabianco, J.S. Ide, and A. Miranda. 2012. Characterization of dual effects induced by antimicrobial peptides: Regulated cell death or membrane disruption. Biochimica et Biophysica Acta 1820: 1062–1072.

    Article  PubMed  CAS  Google Scholar 

  • Shadidi, M., and M. Sioud. 2003. Selective targeting of cancer cells using synthetic peptides. Drug Resistance Updates 6: 363–371.

    Article  PubMed  CAS  Google Scholar 

  • Shai, Y. 1999. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta 1462: 55–70.

    Article  PubMed  CAS  Google Scholar 

  • Shang, D., F. Yu, J. Li, J. Zheng, L. Zhang, and Y. Li. 2009. Molecular cloning of cDNAs encoding antimicrobial peptide precursors from the skin of the Chinese brown frog, Rana chensinensis. Zoological Science 26: 220–226.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L.L., K. Brown, P. Carthew, C.K. Lim, E.A. Martin, J. Styles, and I.N. White. 2000. Chemoprevention of breast cancer by tamoxifen: Risks and opportunities. Critical Reviews in Toxicology 30: 571–594.

    Article  PubMed  CAS  Google Scholar 

  • Stark, M., L.P. Liu, and C.M. Deber. 2002. Cationic hydrophobic peptides with antimicrobial activity. Antimicrobial Agents and Chemotherapy 46: 3585–3590.

    Article  PubMed  CAS  Google Scholar 

  • Szakács, G., J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, and M.M. Gottesman. 2006. Targeting multidrug resistance in cancer. National Reviews. Drug Discovery. 5: 219–234.

    Article  Google Scholar 

  • Wang, C., H.B. Li, S. Li, L.L. Tian, and D.J. Shang. 2012. Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie 94: 434–441.

    Article  PubMed  CAS  Google Scholar 

  • Wieprecht, T., M. Dathe, M. Beyermann, E. Krause, W.L. Maloy, D.L. MacDonald, and M. Bienert. 1997. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 36: 6124–6132.

    Article  PubMed  CAS  Google Scholar 

  • Yeaman, M.R., and N.Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews 55: 27–55.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81202448 and 31272314), Scientific Research Fund of Liaoning Provincial Education Department (L2012382) and the Program for Liaoning Innovative Research Team in University (LT2012019).

Conflict of interest

The authors declare that there are no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Che Wang or De-Jing Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, QZ., Wang, C., Lang, L. et al. Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch. Pharm. Res. 36, 1302–1310 (2013). https://doi.org/10.1007/s12272-013-0112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0112-8

Keywords

Navigation