Skip to main content

Multifunctional Photoacoustic Tomography

  • Living reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering
  • 543 Accesses

Abstract

Photoacoustic tomography (PAT) is becoming a novel biomedical imaging modality which exploits conversion of laser energy to sound waves in optically irradiated tissue. PAT has several advantages: (1) it is safe because it uses ionizing radiation; (2) it overcomes the optical diffusion limitation in optically scattering media and consequently achieves high-resolution imaging with a range greater than one optical transport mean free path (i.e., ~1 mm) in tissues; (3) it provides uniquely high contrast of optical absorption unlike other optical imaging modalities which typically are sensitive to optical scattering, polarization, and fluorescence; (4) it can be easily adapted to existing conventional ultrasound imaging scanners; thus, PAT systems are relatively cheap and portable; and (5) it can provide information about multiple physiological parameters such as temperature, blood flow, total hemoglobin concentration, oxygen saturation of hemoglobin, metabolic rate, and conversion efficiency between radiative and nonradiative energy decays. This chapter will cover (1) basic principles, (2) various imaging systems, (3) morphological PAT, (4) functional PAT, and (5) molecular PAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bell AG (1880) The photophone. Science 1(11):130–134

    Article  Google Scholar 

  2. Wang LV, Wu H-i (2007) Biomedical optics: principles and imaging. Wiley-Interscience, Hoboken

    Google Scholar 

  3. Wang LV (2009) Photoacoustic imaging and spectroscopy. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Li C, Aguirre A, Gamelin J (2010) Real-time photoacoustic tomography of cortical hemodynamics in small animals. J Biomed Opt 15(1):010509–010509-3

    Article  Google Scholar 

  5. Hu S, Maslov K, Wang LV (2011) Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 36(7):1134–1136

    Article  Google Scholar 

  6. Kim C, Erpelding TN, Jankovic L et al (2011) Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos Trans A Math Phys Eng Sci 369(1955):4644–4650

    Article  Google Scholar 

  7. Li L, Zhang HF, Zemp RJ et al (2008) Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy. J Innov Opt Health Sci 1(2):207–215

    Article  Google Scholar 

  8. Kim C, Qin R, Xu JS (2010) Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. J Biomed Opt 15(1):010510

    Article  Google Scholar 

  9. Wang LV (2009) Multiscale photoacoustic microscopy and computed tomography. Nat Photo 3(9):503–509

    Article  Google Scholar 

  10. Wang LHV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462

    Article  Google Scholar 

  11. Guo ZJ, Li L, Wang LHV (2009) On the speckle-free nature of photoacoustic tomography. Med Phys 36(9):4084–4088

    Article  Google Scholar 

  12. Zhang EZ, Povazay B, Laufer J et al (2011) Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed Opt Express 2(8):2202–2215

    Article  Google Scholar 

  13. Li L, Maslov K, Ku G et al (2009) Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies. Opt Express 17(19):16450–16455

    Article  Google Scholar 

  14. Jiao S, Xie Z, Zhang HF et al (2009) Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt Lett 34(19):2961–2963

    Article  Google Scholar 

  15. Yao JJ, Wang LHV (2013) Photoacoustic microscopy. Laser Photo Rev 7(5):758–778

    Article  Google Scholar 

  16. Wells PN (1999) Ultrasonic imaging of the human body. Rep Prog Phys 62(5):671

    Article  Google Scholar 

  17. Jeon M. Kim J, Kim C (2014) Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput 1–12

    Google Scholar 

  18. Matthews TP, Zhang CC, Yao DK et al (2014) Label-free photoacoustic microscopy of peripheral nerves. J Biomed Optics 19(1)

    Google Scholar 

  19. Hu S, Wang LHV (2013) Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level. Biophys J 105(4):841–847

    Article  Google Scholar 

  20. Yao JJ, Huang CH, Wang LD (2012) Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. J Biomed Opt 17(8):080505–1

    Article  Google Scholar 

  21. Wang X, Ku G, Wegiel MA et al (2004) Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29(7):730–732

    Article  Google Scholar 

  22. Wang X, Stoica G, Xie X (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J Biomed Opt 11(2):024015–024015-9

    Article  Google Scholar 

  23. Wang X, Pang Y, Ku G et al (2003) Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. Opt Lett 28(19):1739–1741

    Article  Google Scholar 

  24. Wang X, Pang Y, Ku G et al (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806

    Article  Google Scholar 

  25. Wang X, Xu Y, Xu M et al (2002) Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment. Med Phys 29(12):2799–2805

    Article  Google Scholar 

  26. Nasiriavanaki M, Xia J, Wan H et al (2014) High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci U S A 111(1):21–26

    Article  Google Scholar 

  27. Wang K, Xia J, Li C (2014) Fast spatiotemporal image reconstruction based on low-rank matrix estimation for dynamic photoacoustic computed tomography. J Biomed Opt 19(5):056007

    Article  Google Scholar 

  28. Chatni MR, Xia J, Sohn R (2012) Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography. J Biomed Opt 17(7):076012

    Article  Google Scholar 

  29. Buehler A, Herzog E, Razansky D et al (2010) Video rate optoacoustic tomography of mouse kidney perfusion. Opt Lett 35(14):2475–2477

    Article  Google Scholar 

  30. Taruttis A, Herzog E, Razansky D et al (2010) Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt Express 18(19):19592–19602

    Article  Google Scholar 

  31. Rosenthal A, Razansky D, Ntziachristos V (2010) Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography. Med Imaging IEEE Trans 29(6):1275–1285

    Article  Google Scholar 

  32. Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6(8):1121–1129

    Article  Google Scholar 

  33. Dean-Ben XL, Razansky D (2014) Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light-Sci App(3)

    Google Scholar 

  34. Dean-Ben XL, Razansky D (2013) Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt Express 21(23):28062–28071

    Article  Google Scholar 

  35. Buehler A, Herzog E, Ale A et al (2012) High resolution tumor targeting in living mice by means of multispectral optoacoustic tomography. EJNMMI Res 2:14

    Article  Google Scholar 

  36. Taruttis A, Morscher S, Burton NC (2012) Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One 7(1):e30491

    Article  Google Scholar 

  37. Erpelding TN, Kim C, Pramanik M et al (2010) Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system 1. Radiology 256(1):102–110

    Article  Google Scholar 

  38. Kim C, Erpelding TN, Jankovic L et al (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed opt express 1(1):278–284

    Article  Google Scholar 

  39. Kim C, Erpelding TN, Jankovic L et al (2011) Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos Trans R Soc Math Phys Eng Sci 369(1955):4644–4650

    Article  Google Scholar 

  40. Kim C, Erpelding TN, Maslov K (2010) Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. J Biomed Opt 15(4):046010–046010-4

    Article  Google Scholar 

  41. Kitai T, Torii M, Sugie T et al (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21(2):146–153

    Article  Google Scholar 

  42. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(14):5007–5008

    Article  MathSciNet  Google Scholar 

  43. Jeon JKM, Kim C (2014) Multiplane spectroscopic whole body photoacoustic tomography of small animals in vivo. Med Biol Eng Comput

    Google Scholar 

  44. Strohm EM, Berndl ESL, Kolios MC (2013) High frequency label-free photoacoustic microscopy of single cells. Photoacoust 1(3–4):49–53

    Article  Google Scholar 

  45. Zhang HF, Maslov K, Stoica G et al (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24(7):848–851

    Article  Google Scholar 

  46. Jansen K, van der Steen AFW, van Beusekom HMM et al (2011) Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt Lett 36(5):597–599

    Article  Google Scholar 

  47. Yeager D, Karpiouk A, Wang B (2012) Intravascular photoacoustic imaging of exogenously labeled atherosclerotic plaque through luminal blood. J Biomed Opt 17(10):106016

    Article  Google Scholar 

  48. Jo JG, Yang XM (2011) Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride. J Biomed Opt 16(9):090506

    Article  Google Scholar 

  49. Foo SS, Abbott DF, Lawrentschuk N et al (2004) Functional imaging of intratumoral hypoxia. Mol Imaging Biol 6(5):291–305

    Article  Google Scholar 

  50. Vanzetta I, Grinvald A (1999) Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286(5444):1555–1558

    Article  Google Scholar 

  51. Yao JJ, Maslov KI, Zhang Y (2011) Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt 16(7):076003

    Article  Google Scholar 

  52. Robles FE, Chowdhury S, Wax A (2010) Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics. Biomed Opt Express 1(1):310–317

    Article  Google Scholar 

  53. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  Google Scholar 

  54. Li L, Yeh CH, Hu S et al (2014) Fully motorized optical-resolution photoacoustic microscopy. Opt Lett 39(7):2117–2120

    Article  Google Scholar 

  55. Fang H, Maslov K, Wang LV (2007) Photoacoustic Doppler effect from flowing small light-absorbing particles. Phys Rev Lett 99(18):184501

    Article  Google Scholar 

  56. Chen S-L, Ling T, Huang S-W et al (2010) Photoacoustic correlation spectroscopy and its application to low-speed flow measurement. Opt Lett 35(8):1200–1202

    Article  Google Scholar 

  57. Yao J, Maslov KI, Shi Y et al (2010) In vivo hotoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt Lett 35(9):1419–1421

    Article  Google Scholar 

  58. Brunker J, Beard P (2012) Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: accuracy, resolution and scalability. J Acoust Soc Am 132(3):1780–1791

    Article  Google Scholar 

  59. Zhou Y, Liang JY, Maslov KI et al (2013) Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow time profiles from photoacoustic microscopy. Opt Lett 38(19):3882–3885

    Article  Google Scholar 

  60. Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17(1):64–72

    Article  Google Scholar 

  61. Yao J, Wang L (2013) Multi-scale multi-contrast photoacoustic microscopy. FM4A 1

    Google Scholar 

  62. Kim C, Favazza C, Wang LV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782

    Article  Google Scholar 

  63. Song KH, Margenthaler JA, Wang LV (2008) Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J Biomed Opt 13(5):054033–054033-6

    Article  Google Scholar 

  64. Masannat Y, Shenoy H, Speirs V et al (2006) Properties and characteristics of the dyes injected to assist axillary sentinel node localization in breast surgery. Eur J Sur Oncol (EJSO) 32(4):381–384

    Article  Google Scholar 

  65. Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30(5):507–509

    Article  Google Scholar 

  66. Prahl S (2001) Oregon medical laser center. http://omlc.ogi.edu/spectra

  67. Li L, Liu C, Ren H et al (2013) Adaptive liquid iris based on electrowetting. Opt Lett 38(13):2336–2338

    Article  Google Scholar 

  68. Liu X, Lee C, Law WC et al (2013) Au-Cu(2-x)Se heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett 13(9):4333–4339

    Article  Google Scholar 

  69. Luther JM, Jain PK, Ewers T et al (2011) Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 10(5):361–366

    Article  Google Scholar 

  70. Dorfs D, Hartling T, Miszta K et al (2011) Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. J Am Chem Soc 133(29):11175–11180

    Article  Google Scholar 

  71. Zhao Y, Pan H, Lou Y et al (2009) Plasmonic Cu2−x S nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides. J Am Chem Soc 131(12):4253–4261

    Article  Google Scholar 

  72. Chen J, Glaus C, Laforest R et al (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817

    Article  Google Scholar 

  73. Lovell JF, Jin CS, Huynh E et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332

    Article  Google Scholar 

  74. Zhang Y, Jeon M, Rich LJ et al (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9(8):631–638

    Article  Google Scholar 

  75. Kopelman R, Lee Koo Y-E, Philbert M et al (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 293(1):404–410

    Article  Google Scholar 

  76. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330

    Article  Google Scholar 

  77. Kukowska-Latallo JF, Candido KA, Cao Z et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    Article  Google Scholar 

  78. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594

    Article  Google Scholar 

  79. Sumer B, Gao J (2008) Theranostic nanomedicine for cancer. Nanomedicine 3(2):137–140

    Article  Google Scholar 

  80. Lammers T, Aime S, Hennink WE et al (2011) Theranostic nanomedicine. Acc Chem Res 44(10):1029–1038

    Article  Google Scholar 

  81. Kim C, Cho EC, Chen J et al (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564

    Article  Google Scholar 

  82. Song KH, Kim C, Cobley CM et al (2008) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9(1):183–188

    Article  Google Scholar 

  83. Moon GD, Choi S-W, Cai X et al (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133(13):4762–4765

    Article  Google Scholar 

  84. Li W, Brown PK, Wang LV et al (2011) Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol Imaging 6(5):370–377

    Article  Google Scholar 

  85. Cai X, Li W, Kim C-H et al (2011) In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano 5(12):9658–9667

    Article  Google Scholar 

  86. Srivatsan A, Jenkins SV, Jeon M et al (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Ther 4(2):163–174

    Google Scholar 

  87. Lu W, Melancon MP, Xiong C et al (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71(19):6116–6121

    Article  Google Scholar 

  88. Lu W, Huang Q, Ku G et al (2010) Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 31(9):2617–2626

    Article  Google Scholar 

  89. Manohar S, Ungureanu C, Van Leeuwen TG (2011) Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats. Contrast Media Mol Imaging 6(5):389–400

    Article  Google Scholar 

  90. Bayer CL, Chen Y-S, Kim S et al (2011) Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods. Biomed opt express 2(7):1828–1835

    Article  Google Scholar 

  91. Chen L-C, Wei C-W, Souris JS (2010) Enhanced photoacoustic stability of gold nanorods by silica matrix confinement. J Biomed Opt 15(1):016010–016010-6

    Article  Google Scholar 

  92. Chen Y-S, Frey W, Kim S et al (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878

    Article  Google Scholar 

  93. Ha S, Carson A, Agarwal A et al (2011) Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods. Biomed opt express 2(3):645–657

    Article  Google Scholar 

  94. Kim K, Huang S-W, Ashkenazi S (2007) Photoacoustic imaging of early inflammatory response using gold nanorods. Appl Phys Lett 90(22):223901

    Article  Google Scholar 

  95. Li P-C, Huang S-W, Wei C-W et al (2005) Photoacoustic flow measurements by use of laser-induced shape transitions of gold nanorods. Opt Lett 30(24):3341–3343

    Article  Google Scholar 

  96. Li P-C, Wang C-RC, Shieh D-B et al (2008) In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt Express 16(23):18605–18615

    Article  Google Scholar 

  97. Li P-C, Wei C-W, Liao C-K et al (2007) Photoacoustic imaging of multiple targets using gold nanorods. Ultrason Ferroelectr Freq Control IEEE Trans 54(8):1642–1647

    Article  Google Scholar 

  98. Wei C-W, Huang S-W, Wang C-RC et al (2007) Photoacoustic flow measurements based on wash-in analysis of gold nanorods. Ultrason Ferroelectr Freq Control IEEE Trans 54(6):1131–1141

    Article  Google Scholar 

  99. Wang Y, Xie X, Wang X et al (2004) Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 4(9):1689–1692

    Article  Google Scholar 

  100. Kim C, Song H-M, Cai X et al (2011) In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J Mater Chem 21(9):2841–2844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulhong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lee, C., Park, S., Kim, J., Kim, C. (2014). Multifunctional Photoacoustic Tomography. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6174-2_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6174-2_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6174-2

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics