Skip to main content

Advertisement

Log in

Photoacoustic mammography: initial clinical results

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Purpose

Photoacoustic tomography can image the hemoglobin distribution and oxygenation state inside tissue with high spatial resolution. The purpose of this study is to investigate its clinical usefulness for diagnosis of breast cancer and evaluation of therapeutic response in relation to other diagnostic modalities.

Materials and methods

Using a prototype machine for photoacoustic mammography (PAM), 27 breast tumor lesions, including 21 invasive breast cancer (IBC), five ductal carcinoma in situ (DCIS), and one phyllodes tumor, were measured. Nine out of twenty-one IBC patients had received primary systemic therapy (PST).

Results

Eight out of twelve IBC without PST were visible. Notably, detection was possible in all five cases with DCIS, whereas it was not in one case with phyllodes tumor. Seven out of nine IBC with PST were assigned as visible in spite of decreased size of tumor after PST. The mean value of hemoglobin saturation in the visible lesions was 78.6 %, and hemoglobin concentration was 207 μM. The tumor images of PAM were comparable to those of magnetic resonance imaging (MRI).

Conclusions

It is suggested that PAM can image tumor vascularity and oxygenation, which may be useful for diagnosis and characterization of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smith PA, D’Orsi C, Newell MS. Screening for breast cancer. In: Harris JR, Lippman ME, Morrow M, Osborne CK, editors. Disease of the breast. 4th ed. Philadelphia: Lippincott–Williams and Wilkins; 2010. pp 87–115.

  2. Gounaris I, Provenzano E, Vallier AL, Hiller L, Iddawela M, Hilborne S, et al. Accuracy of unidimensional and volumetric ultrasound measurements in predicting good pathological response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2011;127:459–69.

    Article  CAS  PubMed  Google Scholar 

  3. Chen JH, Feig BA, Hsiang DJ, Butler JA, Mehta RS, Bahri S, et al. Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer. Ann Surg. 2009;249:448–54.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wang LV, Wu HI. Biomedical optics principles and imaging. Hoboken: Wiley-Interscience; 2007.

    Google Scholar 

  5. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008;26:4012–21.

    Article  PubMed  Google Scholar 

  6. Brem SS, Jensen HM, Guillino PM. Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer. 1978;41:239–44.

    Article  CAS  PubMed  Google Scholar 

  7. Viacava P, Naccarato AG, Bocci G, Fanelli G, Aretini P, Lonobile A, et al. Angiogenesis and VEGF expression in pre-invasive lesions of the human breast. J Pathol. 2004;204:140–6.

    Article  CAS  PubMed  Google Scholar 

  8. Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 2004;64:2941–55.

    Article  CAS  PubMed  Google Scholar 

  9. Guidi AJ, Fischer L, Harris JR, Schnitt SJ. Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst. 1994;86:614–9.

    Article  CAS  PubMed  Google Scholar 

  10. Makris A, Powles TJ, Kakolyris S, Dowsett M, Ashley SE, Harris AL. Reduction in angiogenesis after neoadjuvant chemoendocrine therapy in patients with operable breast carcinoma. Cancer. 1999;85:1996–2000.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang S, Pogue BW, Carpenter CN, Poplack SP, Wells WA, Kogel CA, et al. Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes. Radiology. 2009;252:551–60.

    Article  PubMed  Google Scholar 

  12. Soliman H, Gunasekara A, Rycroft M, Zubovits J, Dent R, Spayne J, et al. Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in woman with locally advanced breast cancer. Clin Cancer Res. 2010;16:2605–14.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Q, Hegde PU, Ricci A, Kane M, Cronin EB, Ardeshirpour Y, et al. Early-stage invasive breast cancers: Potential role of optical tomography with US localization in assisting diagnosis. Radiology. 2010;256:367–78.

    Article  PubMed  Google Scholar 

  14. Tromberg BJ, Pogue BW, Paulsen KD, Yodh AG, Boas DA, Cerussi AE. Assessing the future of diffuse optical imaging technique for breast cancer management. Med Phys. 2008;35:2443–51.

    Article  PubMed  Google Scholar 

  15. Choe R, Konecky SD, Corlu A, Lee K, Durduran T, Busch DR, et al. Differentiation of benign and malignant breast tumors by in vivo three-dimensional parallel-plate diffuse optical tomography. J Biomed Opt. 2009;14:024020.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Roblyer DM, Ueda S, Cerussi AE, Tanamai W, Durkin A, Mehta RS, et al. Oxyhemoglobin flare after the first day of neoadjuvant breast cancer chemotherapy predicts overall response. Cancer Res. 2010;70:363s.

    Google Scholar 

  17. Leff DR, Warren OJ, Enfield LC, Hebden J, Yang GZ, Darzi A. Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res Treat. 2008;108:9–22.

    Article  PubMed  Google Scholar 

  18. Emelianov S, Li P-C, O’Donnell M. Photoacoustics for molecular imaging and therapy. Phys Today. 2009;62:34–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Laufer J, Delpy D, Elwell C, Beard P. Quantitative spatially resolved measurement of tumor chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and hemoglobin concentration. Phys Med Biol. 2007;52:141–68.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang EZ, Laufer JG, Pedley RB, Beard PC. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys Med Biol. 2009;54:1035–46.

    Article  CAS  PubMed  Google Scholar 

  21. Manohar S, Vaartjes SE, Hespen JCG, Klasse JM, Engh FM, Steenbergen W, et al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Exp. 2007;15:12277–85.

    Article  Google Scholar 

  22. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP. Photoacoustic angiography of the breast. Med Phys. 2010;37:6096–100.

    Article  PubMed  Google Scholar 

  23. Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R, Mehta K, et al. Laser optoacoustic imaging system for detection of breast cancer. J Biomed Opt. 2009;14:024007.

    Article  PubMed  Google Scholar 

  24. Fukutani K, Someda Y, Taku M, Asao Y, Kobayashi S, Yagi T, et al. Characterization of photoacoustic tomography system with dual illumination. Proc SPIE 2011;7899:78992J.

    Google Scholar 

  25. Tanji K, Watanabe K, Fukutani K, Asao Y, Yagi T. Yamakawa M, et al. Advanced model-based reconstruction algorithm for practical three-dimensional photo acoustic imaging. Proc SPIE 2011;7899:78992K.

    Google Scholar 

  26. Suzuki K, Yamashita Y, Ohta K, Kaneko M, Yoshida M, Chance B. Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy in vivo results of 30 Japanese women. J Biomed Opt. 1996;1:330–4.

    Article  CAS  PubMed  Google Scholar 

  27. Kurosumi M, Akashi-Tanaka S, Akiyama F, Komoike Y, Mukai H, Nakamura S, et al. Histopathological criteria for assessment of therapeutic response in breast cancer (2007 version). Breast Cancer. 2008;15:5–7.

    Article  PubMed  Google Scholar 

  28. Kim C, Song KH, Gao F, Wang LV. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats—volumetric spectroscopic photoacoustic imaging and planer fluorescence imaging. Radiology. 2010;255:442–50.

    Article  PubMed  Google Scholar 

  29. Erpelding TN, Kim C, Pramanik M, Jankovic L, Maslov K, Guo Z, et al. Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology. 2010;256:102–10.

    Article  PubMed  Google Scholar 

  30. Orel SG, Schnall MD. MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology. 2001;220:13–30.

    Article  CAS  PubMed  Google Scholar 

  31. Tse GM, Chaiwun B, Won KT, Yeung DK, Pang AL, Tang AP, et al. Magnetic resonance imaging of breast lesions: a pathological correlation. Breast Cancer Res Treat. 2007;103:1–10.

    Article  PubMed  Google Scholar 

  32. Chuah BY, Putti T, Salto-Tellez M, Charlton A, Iau P, Buhari SA, et al. Serial changes in the expression of breast cancer-related proteins in response to neoadjuvant chemotherapy. Ann Oncol. 2011;22:1748–54.

    Article  CAS  PubMed  Google Scholar 

  33. Smith IE, Dowsett M, Ebbs SR, Dixon JM, Skene A, Blohmer YU, et al. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the immediate preoperative anastrozole, tamoxifen, or combined with tamoxifen (IMPACT) multicenter double-blind randomized trial. J Clin Oncol. 2005;23:5108–16.

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs MA, Ouwerkerk R, Wolff AC, Gabrielson E, Warzecha H, Jeter S, et al. Monitoring of neoadjuvant chemotherapy using multiparametric, (23)Na sodium MR, and multimodality (PET/CT/MRI) imaging in locally advance breast cancer. Breast Cancer Res Treat. 2011;128:119–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Loo CE, Straver ME, Rodenhuis S, Muller SH, Wesseling J, Vrancken Peeters MJ, et al. Magnetic resonance imaging response monitoring of breast cancer during neoadjuvant chemotherapy: relevance of breast cancer subtype. J Clin Oncol. 2011;29:660–666.

    Google Scholar 

  36. Wang B, Povoski SP, Cao X, Sun D, Xu RX. Dynamic schema for near infrared detection of pressure-induced changes in solid tumors. Appl Opt. 2008;47:3053–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Innovative Techno-Hub for Integrated Medical Bio-imaging Project of the Special Coordination Funds for Promoting Science and Technology, from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Kitai.

About this article

Cite this article

Kitai, T., Torii, M., Sugie, T. et al. Photoacoustic mammography: initial clinical results. Breast Cancer 21, 146–153 (2014). https://doi.org/10.1007/s12282-012-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-012-0363-0

Keywords

Navigation