Skip to main content

Predicting ADME Properties of Chemicals

  • Living reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

Since many drug development projects fail during clinical trials due to poor ADME properties, it is a wise practice to introduce ADME tests at the early stage of drug discovery. Various experimental and computational methods have been developed to obtain ADME properties in an economical manner in terms of time and cost. As in vitro and in vivo experimental data on ADME have accumulated, the accuracy of in silico models in ADME increases and thus, many in silico models are now widely used in drug discovery. Because of the demands from drug discovery researchers, the development of in silico models in ADME has become more active. In this chapter, the definitions of ADME endpoints are summarized, and in silico models related to ADME are introduced for each endpoint. Part I discusses the prediction models of the physicochemical properties of compounds, which influence much of the pharmacokinetics of pharmaceuticals. The prediction models of physical properties are developed based mainly on thermodynamics and are knowledge based, especially QSAR (quantitative structure activity relationship) methods. Part II covers the prediction models of the endpoints in ADME which include both in vitro and in vivo assay results. Most models are QSAR based and various kinds of descriptors (topology, 1D, 2D, and 3D descriptors) are used. Part III reviews physiologically based pharmacokinetic (PBPK) models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Abraham, M. H., Grellier, P. L., Hamerton, I., McGill, R. A., Prior, D. V., & Whiting, G. S. (1988). Solvation of gaseous non-electrolytes. Faraday Discussions of the Chemical Society, 85, 107–115.

    Article  CAS  Google Scholar 

  • Ai, N., Fan, X., & Ekins, S. (2015). In silico methods for predicting drug-drug interactions with cytochrome P-450s, transporters and beyond. Advanced Drug Delivery Reviews, 86, 46–60. doi:10.1016/j.addr.2015.03.006.

    Article  CAS  Google Scholar 

  • Akamatsu, M., Fujiwaka, M., Nakao, K., & Shimizu, R. (2009). In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability. Chemistry & Biodiversity, 6(11), 1845–1866.

    Article  CAS  Google Scholar 

  • Alkorta, I., & Popelier, P. L. (2015). Linear free-energy relationships between a single gas-phase ab initio equilibrium bond length and experimental pKa values in aqueous solution. Chemphyschem, 16(2), 465–469. doi:10.1002/cphc.201402711.

    Article  CAS  Google Scholar 

  • Andrade, C. H., Silva, D. C., & Braga, R. C. (2014). In silico prediction of drug metabolism by P450. Current Drug Metabolism, 15(5), 514–525.

    Article  CAS  Google Scholar 

  • Bergstrom, C. A., Luthman, K., & Artursson, P. (2004). Accuracy of calculated pH-dependent aqueous drug solubility. European Journal of Pharmaceutical Sciences, 22(5), 387–398. doi:10.1016/j.ejps.2004.04.006.

    Article  CAS  Google Scholar 

  • Campagna-Slater, V., & Schapira, M. (2009). Evaluation of virtual screening as a tool for chemical genetic applications. Journal of Chemical Information and Modeling, 49(9), 2082–2091.

    Article  CAS  Google Scholar 

  • Chen, C. N., Shih, Y. H., Ding, Y. L., & Leong, M. K. (2011). Predicting activation of the promiscuous human pregnane X receptor by pharmacophore ensemble/support vector machine approach. Chemical Research in Toxicology, 24(10), 1765–1778. doi:10.1021/tx200310j.

    Article  CAS  Google Scholar 

  • Chen, L. L., Yao, J., Yang, J. B., & Yang, J. (2005). Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. Acta Pharmacologica Sinica, 26(11), 1322–1333. doi:10.1111/j.1745-7254.2005.00166.x.

    Article  CAS  Google Scholar 

  • Cheng, F., Li, W., Liu, G., & Tang, Y. (2013). In silico ADMET prediction: Recent advances, current challenges and future trends. Current Topics in Medicinal Chemistry, 13(11), 1273–1289.

    Article  CAS  Google Scholar 

  • Choi, I., Kim, S. Y., Kim, H., Kang, N. S., Bae, M. A., Yoo, S. E., Jung, J., & No, K. T. (2009). Classification models for CYP450 3A4 inhibitors and non-inhibitors. European Journal of Medicinal Chemistry, 44(6), 2354–2360. doi:10.1016/j.ejmech.2008.08.013.

    Article  CAS  Google Scholar 

  • Colmenarejo, G. (2007). In silico prediction of plasma and tissue protein binding. In J. B. Taylor & D. J. Triggle (Eds.), Comprehensive medicinal chemistry II (ADME-Tox approaches, pp. 847–866). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Costa, P., & Lobo, J. M. S. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123–133.

    Article  CAS  Google Scholar 

  • Cramer, C. J., & Truhlar, D. G. (1995). Continuum solvation models. In O. Tapia & J. Bertrán (Eds.), Solvent effects and chemical reactivity. New York: Klewer.

    Google Scholar 

  • Cruciani, G., Carosati, E., Boeck, B. D., Ethirajulu, K., Mackie, C., Howe, T., & Vianello, R. (2006). MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist. Journal of Medicinal Chemistry, 48(22), 6970–6979.

    Article  Google Scholar 

  • Dave, R. A., & Morris, M. E. (2015). Quantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humans. Drug Metabolism and Disposition, 43(1), 73–81. doi:10.1124/dmd.114.059857.

    Article  Google Scholar 

  • Dokoumetzidis, A., & Macheras, P. (2006). A century of dissolution research: From Noyes and Whitney to the biopharmaceutics classification system. International Journal of Pharmaceutics, 321(1–2), 1–11. doi:10.1016/j.ijpharm.2006.07.011.

    Article  CAS  Google Scholar 

  • Dowty, M. E., Messing, D. M., Lai, Y., & Kirkovsky, L. (2011). ADME. In K. Tsaioun & S. A. Kates (Eds.), ADMET for medicinal chemists: A practical guide (pp. 145–200). Singapore: Wiley.

    Google Scholar 

  • Durairaj, C., Shah, J. C., Senapati, S., & Kompella, U. B. (2009). Prediction of vitreal half-life based on drug physicochemical properties: Quantitative structure-pharmacokinetic relationships (QSPKR). Pharmaceutical Research, 26(5), 1236–1260. doi:10.1007/s11095-008-9728-7.

    Article  CAS  Google Scholar 

  • Edginton, A. N., Theil, F.-P., Schmitt, W., & Willmann, S. (2008). Whole body physiologically-based pharmacokinetic models: Their use in clinical drug development. Expert Opinion on Drug Metabolism & Toxicology, 4(9), 1143–1152.

    Article  CAS  Google Scholar 

  • Fraczkiewicz, R. (2013). In Silico prediction of ionization. In: Testa B, Waterbeemd Hvd (eds.) Comprehensive Medicinal Chemistry II, vol 5. Elsevier. doi:10.1016/b978-0-12-409547-2.02610-x

    Google Scholar 

  • Fraczkiewicz, R., Lobell, M., Goller, A. H., Krenz, U., Schoenneis, R., Clark, R. D., & Hillisch, A. (2015). Best of both worlds: Combining pharma data and state of the art modeling technology to improve in Silico pKa prediction. Journal of Chemical Information and Modeling, 55(2), 389–397. doi:10.1021/ci500585w.

    Article  CAS  Google Scholar 

  • Gasteiger, J., & Hutchings, M. G. (1983). New empirical models of substituent polarisability and their application to stabilisation effects in positively charged species. Tetrahedron Letters, 24(25), 2537–2540.

    Article  CAS  Google Scholar 

  • General concept and deliverables of Phase II “integration” (2007). Hepatosys project comittee.

    Google Scholar 

  • Ghafourian, T., Barzegar-Jalali, M., Dastmalchi, S., Khavari-Khorasani, T., Hakimiha, N., & Nokhodchi, A. (2006). QSPR models for the prediction of apparent volume of distribution. International Journal of Pharmaceutics, 319(1–2), 82–97. doi:10.1016/j.ijpharm.2006.03.043.

    Article  CAS  Google Scholar 

  • Gleeson, M. P., Hersey, A., & Hannongbua, S. (2011). In-silico ADME models: A general assessment of their utility in drug discovery applications. Current Topics in Medicinal Chemistry, 11(4), 358–381.

    Article  CAS  Google Scholar 

  • Goel, H., Sinha, V. R., Thareja, S., Aggarwal, S., & Kumar, M. (2011). Assessment of biological half life using in silico QSPkR approach: A self organizing molecular field analysis (SOMFA) on a series of antimicrobial quinolone drugs. International Journal of Pharmaceutics, 415(1–2), 158–163. doi:10.1016/j.ijpharm.2011.05.065.

    Article  CAS  Google Scholar 

  • Guidance document on the validation of (Quantitative)Structure-Activity Relationships[(Q)SAR] Models. (2007). vol 69. OECD, OECD Environment Health and Safety publications.

    Google Scholar 

  • Hansen, N. T., Kouskoumvekaki, I., Jorgensen, F. S., Brunak, S., & Jonsdottir, S. O. (2006). Prediction of pH-dependent aqueous solubility of druglike molecules. Journal of Chemical Information and Modeling, 46(6), 2601–2609.

    Article  CAS  Google Scholar 

  • Hennemann, M., Friedl, A., Lobell, M., Keldenich, J., Hillisch, A., Clark, T., & Goller, A. H. (2009). CypScore: Quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory. ChemMedChem, 4(4), 657–669. doi:10.1002/cmdc.200800384.

    Article  CAS  Google Scholar 

  • Hernandez, A. I., Le Rolle, V., Defontaine, A., & Carrault, G. (2009). A multiformalism and multiresolution modelling environment: Application to the cardiovascular system and its regulation. Philosophical Transactions:A Mathematical, Physical and Engineering Sciences, 367(1908), 4923–4940. doi:10.1098/rsta.2009.0163.

    Article  Google Scholar 

  • Hou, T., Li, Y., Zhang, W., & Wang, J. (2009). Recent developments of in silico predictions of intestinal absorption and oral bioavailability. Combinatorial Chemistry & High Throughput Screening, 12(5), 497–506.

    Article  CAS  Google Scholar 

  • Hou, T., Wang, J., Zhang, W., Wang, W., & Xu, X. (2006). Recent advances in computational prediction of drug absorption and permeability in drug discovery. Current Medicinal Chemistry, 13(22), 2653–2667.

    Article  CAS  Google Scholar 

  • Huang, T. W., Zaretzki, J., Bergeron, C., Bennett, K. P., & Breneman, C. M. (2013). DR-predictor: Incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism. Journal of Chemical Information and Modeling, 53(12), 3352–3366. doi:10.1021/ci4004688.

    Article  CAS  Google Scholar 

  • Huang, W., Geng, L., Deng, R., Lu, S., Ma, G., Yu, J., Zhang, J., Liu, W., Hou, T., & Lu, X. (2015). Prediction of Human Clearance Based on Animal Data and Molecular Properties. Chemical Biology and Drug Design, 86(5), 990–997. doi:10.1111/cbdd.12567.

    Article  CAS  Google Scholar 

  • Hughes, T. B., Miller, G. P., & Swamidass, S. J. (2015). Modeling epoxidation of drug-like molecules with a deep machine learning network. ACS Central Science, 1(4), 168–180. doi:10.1021/acscentsci.5b00131.

    Article  CAS  Google Scholar 

  • Isin, E. M., & Guengerich, F. P. (2007). Complex reactions catalyzed by cytochrome P450 enzymes. Biochimica et Biophysica Acta, 1770(3), 314–329. doi:10.1016/j.bbagen.2006.07.003.

    Article  CAS  Google Scholar 

  • Jancova, P., Anzenbacher, P., & Anzenbacherova, E. (2010). Phase II drug metabolizing enzymes. Biomedical papers of the medical faculty of the university palacky, olomouc. Czechoslovakia, 154(2), 103–116.

    CAS  Google Scholar 

  • Jung, J., Kim, N. D., Kim, S. Y., Choi, I., Cho, K.-H., Oh, W. S., Kim, D. N., & No, K. T. (2008). Regioselectivity prediction of CYP1A2-mediated phase I metabolism. Journal of Chemical Information and Modeling, 48(5), 1074–1080.

    Article  CAS  Google Scholar 

  • Kim, D. N., Cho, K.-H., Oh, W. S., Lee, C. J., Lee, S. K., Jung, J., & No, K. T. (2009). EaMEAD: Activation energy prediction of CYP450 mediated metabolism with effective atomic descriptors. Journal of Chemical Information and Modeling, 49(7), 1643–1654.

    Article  CAS  Google Scholar 

  • Kim, M. T., Sedykh, A., Chakravarti, S. K., Saiakhov, R. D., & Zhu, H. (2014a). Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharmaceutical Research, 31(4), 1002–1014. doi:10.1007/s11095-013-1222-1.

    Article  CAS  Google Scholar 

  • Kim, N., Shin, J.-M., & No, K. T. (2014b). In silico study on the interaction between P-glycoprotein and its inhibitors at the drug binding pocket. Bulletin of the Korean Chemical Society, 35(8), 2317–2325. doi:10.5012/bkcs.2014.35.8.2317.

    Article  CAS  Google Scholar 

  • Kirchmair, J., Goller, A. H., Lang, D., Kunze, J., Testa, B., Wilson, I. D., Glen, R. C., & Schneider, G. (2015). Predicting drug metabolism: Experiment and/or computation? Nature Reviews Drug Discovery, 14(6), 387–404. doi:10.1038/nrd4581.

    Article  CAS  Google Scholar 

  • Kirchmair, J., Williamson, M. J., Afzal, A. M., Tyzack, J. D., Choy, A. P., Howlett, A., Rydberg, P., & Glen, R. C. (2013). FAst MEtabolizer (FAME): A rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. Journal of Chemical Information and Modeling, 53(11), 2896–2907. doi:10.1021/ci400503s.

    Article  CAS  Google Scholar 

  • Klamt, A., Eckert, F., & Arlt, W. (2010). COSMO-RS: An alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annual Review of Chemical and Biomolecular Engineering, 1, 101–122. doi:10.1146/annurev-chembioeng-073009-100903.

    Article  CAS  Google Scholar 

  • Klepsch, F., Chiba, P., & Ecker, G. F. (2011). Exhaustive sampling of docking poses reveals binding hypotheses for propafenone type inhibitors of P-glycoprotein. PLoS Computational Biology, 7(5), e1002036. doi:10.1371/journal.pcbi.1002036.

    Article  CAS  Google Scholar 

  • Lambrinidis, G., Vallianatou, T., & Tsantili-Kakoulidou, A. (2015). In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Advanced Drug Delivery Reviews, 86, 27–45. doi:10.1016/j.addr.2015.03.011.

    Article  CAS  Google Scholar 

  • Lee, B., & Richards, F. M. (1971). The interpretation of protein structures: Estimation of static accessibility. Journal of Molecular Biology, 55(3), 379–400.

    Article  CAS  Google Scholar 

  • Lee, S., Cho, K.-H., Kang, Y.-M., Scheraga, H. A., & No, K. T. (2013). A generalized G-SFED continuum solvation free energe calculation model. Proceedings of the National Academy of Sciences of the United States of America, 110(8), E662–E667.

    Article  CAS  Google Scholar 

  • Lerapetritou, M. G., Georgopoulos, P. G., Roth, C. M., & Androulakis, L. P. (2009). Tissue-level modeling of xenobiotic metabolism in liver: An emerging tool for enabling clinical translational research. Clinical and Translational Science, 2(3), 228–237. doi:10.1111/j.1752-8062.2009.00092.x.

    Article  Google Scholar 

  • Lewis, D. F., & Ito, Y. (2009). Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity. Xenobiotica, 39(8), 625–635. doi:10.1080/00498250903000255.

    Article  CAS  Google Scholar 

  • Li, J., Schneebeli, S. T., Bylund, J., Farid, R., & Friesner, R. A. (2011). IDSite: An accurate approach to predict P450-mediated drug metabolism. Journal of Chemical Theory and Computation, 7(11), 3829–3845. doi:10.1021/ct200462q.

    Article  CAS  Google Scholar 

  • Lonsdale, R., Houghton, K. T., Zurek, J., Bathelt, C. M., Foloppe, N., de Groot, M. J., Harvey, J. N., & Mulholland, A. J. (2013). Quantum mechanics/molecular mechanics modeling of regioselectivity of drug metabolism in cytochrome P450 2C9. Journal of the American Chemical Society, 135(21), 8001–8015. doi:10.1021/ja402016p.

    Article  CAS  Google Scholar 

  • Lusci, A., Pollastri, G., & Baldi, P. (2013). Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. Journal of Chemical Information and Modeling, 53(7), 1563–1575. doi:10.1021/ci400187y.

    Article  CAS  Google Scholar 

  • Ma, S. L., Joung, J. Y., Lee, S., Cho, K. H., & No, K. T. (2012). PXR ligand classification model with SFED-weighted WHIM and CoMMA descriptors. SAR and QSAR in Environmental Research, 23(5–6), 485–504. doi:10.1080/1062936X.2012.665385.

    Article  CAS  Google Scholar 

  • Mannhold, R., Poda, G. I., Ostermann, C., & Tetko, I. V. (2009). Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. Journal of Pharmaceutical Sciences, 98(3), 861–893. doi:10.1002/jps.21494.

    Article  CAS  Google Scholar 

  • Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2013). Generalized Born Solvation Model SM12. Journal of Chemical Theory and Computation, 9(1), 609–620. doi:10.1021/ct300900e.

    Article  CAS  Google Scholar 

  • Matsson, P., & Bergström, CAS. (2015). Computational modeling to predict the functions and impact of drug transporters. In Silico Pharmacology 3(1). doi:10.1186/s40203-015-0012-3.

  • Mennucci, B. (2012). Polarizable continuum model. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(3), 386–404. doi:10.1002/wcms.1086.

    CAS  Google Scholar 

  • Mensch, J., Oyarzabal, J., Mackie, C., & Augustijns, P. (2009). In vivo, in vitro and in silico methods for small molecule transfer across the BBB. Journal of Pharmaceutical Sciences, 98(12), 4429–4468. doi:10.1002/jps.21745.

    Article  CAS  Google Scholar 

  • Miley, M. J., Zielinska, A. K., Keenan, J. E., Bratton, S. M., Radominska-Pandya, A., & Redinbo, M. R. (2007). Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. Journal of Molecular Biology, 369(2), 498–511. doi:10.1016/j.jmb.2007.03.066.

    Article  CAS  Google Scholar 

  • Miners, J. O., Smith, P. A., Sorich, M. J., McKinnon, R. A., & Mackenzie, P. I. (2004). Predicting human drug glucuronidation parameters: Application of in vitro and in silico modeling approaches. Annual Review of Pharmacology and Toxicology, 44, 1–25. doi:10.1146/annurev.pharmtox.44.101802.121546.

    Article  CAS  Google Scholar 

  • Moroy, G., Martiny, V. Y., Vayer, P., Villoutreix, B. O., & Miteva, M. A. (2012). Toward in silico structure-based ADMET prediction in drug discovery. Drug Discovery Today, 17(1–2), 44–55. doi:10.1016/j.drudis.2011.10.023.

    Article  CAS  Google Scholar 

  • Oh, W. S., Kim, D. N., Jung, J., Cho, K.-H., & No, K. T. (2008). New combined model for the prediction of regioselectivity in cytochrome P450-3A4 mediated metabolism. Journal of Chemical Information and Modeling, 48(3), 591–601.

    Article  CAS  Google Scholar 

  • Ohno, H., Naito, Y., Nakajima, H., & Tomita, M. (2008). Construction of a biological tissue model based on a single-cell model: A computer simulation of metabolic heterogeneity in the liver lobule. Artificial Life, 14(1), 3–28.

    Article  Google Scholar 

  • Øie, S., & Tozer, T. N. (1979). Effect of altered plasma protein binding on apparent volume of distribution. Journal of Pharmaceutical Sciences, 68(9), 1203–1205.

    Article  Google Scholar 

  • Anzenbacher, P., & Anzenbacherova, E. (2001). Cytochromes P450 and metabolism of xenobiotics. Cellular and molecular life sciences : CMLS, 58(5–6), 737–747.

    Article  CAS  Google Scholar 

  • Pajeva, I. K., Globisch, C., & Wiese, M. (2009). Comparison of the inward- and outward-open homology models and ligand binding of human P-glycoprotein. FEBS Journal, 276(23), 7016–7026. doi:10.1111/j.1742-4658.2009.07415.x.

    Article  CAS  Google Scholar 

  • Peng, J., Lu, J., Shen, Q., Zheng, M., Luo, X., Zhu, W., Jiang, H., & Chen, K. (2013). In silico site of metabolism prediction for human UGT-catalyzed reactions. Bioinformatics, 30(3), 398–405. doi:10.1093/bioinformatics/btt681.

    Article  Google Scholar 

  • Peters, S. A. (2012). Physiologically-Based Pharmacokinetic (PBPK) modeling and simulation principles, methods, and applications in the pharmaceutical industry. Hoboken: Wiley.

    Book  Google Scholar 

  • Pham The, H., González-Álvarez, I., Bermejo, M., Mangas Sanjuan, V., Centelles, I., Garrigues, T. M., & Cabrera-Pérez, M. Á. (2011). In Silico prediction of Caco-2 cell permeability by a classification QSAR approach. Molecular Informatics, 30(4), 376–385. doi:10.1002/minf.201000118.

    Article  CAS  Google Scholar 

  • Poulin, P., & Theil, F.-p. (2001). Prediction of PK prior to in vivo studies. 1. mechanism-based prediction of volume of distribution. Journal of Pharmaceutical Sciences, 91(1), 129–156.

    Article  Google Scholar 

  • Ran, Y., & Yalkowsky, S. H. (2001). Prediction of drug solubility by the general solubility equation (GSE). Journal of Chemical Information and Modeling, 41(2), 354–357.

    CAS  Google Scholar 

  • Rezania V, Marsh R, Coombe D, & Tuszynski J (2013a). A physiologically-based flow network model for hepatic drug elimination I: Regular lattice lobule model. Theoretical Biology and Medical Modelling 10(52). doi:10.1186/1742-4682-10-52.

    Google Scholar 

  • Rezania, V., Marsh, R., Coombe, D., & Tuszynski, J (2013b). A physiologically-based flow network model for hepatic drug elimination II: Variable lattice lobule models. Theoretical Biology and Medical Modelling 10(53). doi:10.1186/1742-4682-10-53.

    Google Scholar 

  • Rostami-Hodjegan, A., & Tucker, G. T. (2007). Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nature Reviews Drug Discovery, 6(2), 140–148. doi:10.1038/nrd2173.

    Article  CAS  Google Scholar 

  • Rowland, M., Peck, C., & Tucker, G. (2011). Physiologically-based pharmacokinetics in drug development and regulatory science. Annual Review of Pharmacology and Toxicology, 51, 45–73. doi:10.1146/annurev-pharmtox-010510-100540.

    Article  CAS  Google Scholar 

  • Rudik, A. V., Dmitriev, A. V., Lagunin, A. A., Filimonov, D. A., & Poroikov, V. V. (2014). Metabolism site prediction based on xenobiotic structural formulas and PASS prediction algorithm. Journal of Chemical Information and Modeling, 54(2), 498–507. doi:10.1021/ci400472j.

    Article  CAS  Google Scholar 

  • Rydberg, P., Gloriam, D. E., Zaretzki, J., Breneman, C., & Olsen, L. (2010). SMARTCyp: A 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Medicinal Chemistry Letters, 1(3), 96–100. doi:10.1021/ml100016x.

    Article  CAS  Google Scholar 

  • Skyner, R. E., McDonagh, J. L., Groom, C. R., van Mourik, T., & Mitchell, J. B. (2015). A review of methods for the calculation of solution free energies and the modelling of systems in solution. PCCP Physical Chemistry Chemical Physics, 17(9), 6174–6191. doi:10.1039/c5cp00288e.

    Article  CAS  Google Scholar 

  • Stjernschantz, E., Reinen, J., Meinl, W., George, B. J., Glatt, H., Vermeulen, N. P., & Oostenbrink, C. (2010). Comparison of murine and human estrogen sulfotransferase inhibition in vitro and in silico – implications for differences in activity, subunit dimerization and substrate inhibition. Molecular and Cellular Endocrinology, 317(1–2), 127–140. doi:10.1016/j.mce.2009.12.001.

    Article  CAS  Google Scholar 

  • Sugano, K. (2009). Introduction to computational oral absorption simulation. Expert Opinion on Drug Metabolism & Toxicology, 5(3), 259–293.

    Article  CAS  Google Scholar 

  • Sui, X., Sun, J., Li, H., Wang, Y., Liu, J., Liu, X., Zhang, W., Chen, L., & He, Z. (2009). Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data. European Journal of Medicinal Chemistry, 44(11), 4455–4460. doi:10.1016/j.ejmech.2009.06.004.

    Article  CAS  Google Scholar 

  • Svobodova Varekova, R., Geidl, S., Ionescu, C. M., Skrehota, O., Kudera, M., Sehnal, D., Bouchal, T., Abagyan, R., Huber, H. J., & Koca, J. (2011). Predicting pK(a) values of substituted phenols from atomic charges: Comparison of different quantum mechanical methods and charge distribution schemes. Journal of Chemical Information and Modeling, 51(8), 1795–1806. doi:10.1021/ci200133w.

    Article  CAS  Google Scholar 

  • Tao, L., Zhang, P., Qin, C., Chen, S. Y., Zhang, C., Chen, Z., Zhu, F., Yang, S. Y., Wei, Y. Q., & Chen, Y. Z. (2015). Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools. Advanced Drug Delivery Reviews, 86, 83–100. doi:10.1016/j.addr.2015.03.014.

    Article  CAS  Google Scholar 

  • Thomas, S. R., Baconnier, P., Fontecave, J., Francoise, J. P., Guillaud, F., Hannaert, P., Hernandez, A., Le Rolle, V., Maziere, P., Tahi, F., & White, R. J. (2008). SAPHIR: A physiome core model of body fluid homeostasis and blood pressure regulation. Philosophical Transactions:A Mathematical, Physical and Engineering Sciences, 366, 3175–3197. doi:10.1098/rsta.2008.0079.

    Article  Google Scholar 

  • Thomas, S. R., Layton, A. T., Layton, H. E., & Moore, L. C. (2006). Kidney modelling: Status and perspectives. Proceedings of IEEE, 94(4), 740–752.

    Article  Google Scholar 

  • Thompson, J. D., Cramer, C. J., & Truhlar, D. G. (2003). Predicting aqueous solubilities from aqueous free energies of solvation and experimental or calculated vapor pressures of pure substances. The Journal of Chemical Physics, 119(3), 1661. doi:10.1063/1.1579474.

    Article  CAS  Google Scholar 

  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999–3093.

    Article  CAS  Google Scholar 

  • Varma, M. V., Steyn, S. J., Allerton, C., & El-Kattan, A. F. (2015). Predicting clearance mechanism in drug discovery: Extended clearance classification system (ECCS). Pharmaceutical Research, 32(12), 3785–3802. doi:10.1007/s11095-015-1749-4.

    Article  CAS  Google Scholar 

  • Wang, J., & Hou, T. (2015). Advances in computationally modeling human oral bioavailability. Advanced Drug Delivery Reviews, 86, 11–16. doi:10.1016/j.addr.2015.01.001.

    Article  CAS  Google Scholar 

  • Windshugel, B., Jyrkkarinne, J., Poso, A., Honkakoski, P., & Sippl, W. (2005). Molecular dynamics simulations of the human CAR ligand-binding domain: Deciphering the molecular basis for constitutive activity. Journal of Molecular Modelling, 11(1), 69–79. doi:10.1007/s00894-004-0227-4.

    Article  Google Scholar 

  • Wood, I., & Pickholz, M. (2013). Concentration effects of sumatriptan on the properties of model membranes by molecular dynamics simulations. European Biophysics Journal, 42(11–12), 833–841. doi:10.1007/s00249-013-0932-y.

    Article  CAS  Google Scholar 

  • Xu, X., Zhang, W., Huang, C., Li, Y., Yu, H., Wang, Y., Duan, J., & Ling, Y. (2012). A novel chemometric method for the prediction of human oral bioavailability. International Journal of Molecular Sciences, 13(6), 6964–6982. doi:10.3390/ijms13066964.

    Article  CAS  Google Scholar 

  • Yang, X., Gandhi, Y. A., Duignan, D. B., & Morris, M. E. (2009). Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships. The AAPS Journal, 11(3), 511–525. doi:10.1208/s12248-009-9124-1.

    Article  CAS  Google Scholar 

  • Yap, C. W., & Chen, Y. Z. (2005). Prediction of cytochrome P450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines. Journal of Chemical Information and Modeling, 45(4), 982–992.

    Article  CAS  Google Scholar 

  • You, H., Kim, G. E., Na, C. H., Lee, S., Lee, C. J., Cho, K. H., Akiyama, Y., Ishida, T., & No, K. T. (2014). An empirical model for gas phase acidity and basicity estimation. SAR and QSAR in Environmental Research, 25(2), 91–115. doi:10.1080/1062936X.2013.864997.

    Article  CAS  Google Scholar 

  • You, H., Lee, K., Lee, S., Hwang, S. B., Kim, K. Y., Cho, K. H., & No, K. T. (2015). Computational classification models for predicting the interaction of compounds with hepatic organic ion importers. Drug Metabolism and Pharmacokinetics, 30(5), 347–351. doi:10.1016/j.dmpk.2015.06.004.

    Article  CAS  Google Scholar 

  • Yu, M. J. (2010). Predicting total clearance in humans from chemical structure. Journal of Chemical Information and Modeling, 50(7), 1284–1295.

    Article  CAS  Google Scholar 

  • Zhivkova, Z., & Doytchinova, I. (2012). Prediction of steady-state volume of distribution of acidic drugs by quantitative structure-pharmacokinetics relationships. Journal of Pharmaceutical Sciences, 101(3), 1253–1266. doi:10.1002/jps.22819.

    Article  CAS  Google Scholar 

  • Zhu, J., Wang, J., Yu, H., Li, Y., & Hou, T. (2011). Recent developments of in silico predictions of oral bioavailability. Combinatorial Chemistry & High Throughput Screening, 14(5), 362–374.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Industrial Core Technology Development Program (10054749, software development about drug metabolism prediction) and funded by the Ministry of Trade, Industry and Energy (MOTIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Kil Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Shin, H.K., Kang, YM., No, K.T. (2016). Predicting ADME Properties of Chemicals. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6169-8_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6169-8_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6169-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics