Skip to main content

Advertisement

Log in

Critical Evaluation of Human Oral Bioavailability for Pharmaceutical Drugs by Using Various Cheminformatics Approaches

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Oral bioavailability (%F) is a key factor that determines the fate of a new drug in clinical trials. Traditionally, %F is measured using costly and time-consuming experimental tests. Developing computational models to evaluate the %F of new drugs before they are synthesized would be beneficial in the drug discovery process.

Methods

We employed Combinatorial Quantitative Structure-Activity Relationship approach to develop several computational %F models. We compiled a %F dataset of 995 drugs from public sources. After generating chemical descriptors for each compound, we used random forest, support vector machine, k nearest neighbor, and CASE Ultra to develop the relevant QSAR models. The resulting models were validated using five-fold cross-validation.

Results

The external predictivity of %F values was poor (R2 = 0.28, n = 995, MAE = 24), but was improved (R2 = 0.40, n = 362, MAE = 21) by filtering unreliable predictions that had a high probability of interacting with MDR1 and MRP2 transporters. Furthermore, classifying the compounds according to the %F values (%F < 50% as “low”, %F ≥ 50% as ‘high”) and developing category QSAR models resulted in an external accuracy of 76%.

Conclusions

In this study, we developed predictive %F QSAR models that could be used to evaluate new drug compounds, and integrating drug-transporter interactions data greatly benefits the resulting models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

%F:

Oral bioavailability

AD:

Applicability domain

ANOVA:

Analysis of variance

CCR:

Correct classification rate (balanced accuracy)

CNT:

Continuous activity scale

Combi-QSAR:

Combinatorial quantitative structure-activity relationship

CPT:

Consensus prediction threshold

CTG:

Category activity scale

CYP:

Cytochrome P450

D:

Dragon descriptors

HIT:

Human intestinal transporter

kNN:

k nearest neighbor

MAE:

Mean absolute error

MDR1:

Multidrug resistance protein 1 (P-gp, ABCB1)

MOE:

Molecular Operating Environment

MPOI:

Mean probability of interaction

MRP2:

Multidrug resistance-associated protein 2 (ABCC2)

POI:

Probability of interaction

QSAR:

Quantitative structure-activity relationship

R2 :

Coefficient of determination

RF:

Random forest

SVM:

Support vector machine

References

  1. Buxton IL, Benet LZ. Chapter 2. Pharmacokinetics: the dynamics of drug absorption, distribution, metabolism, and elimination. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  2. Andrews CW, Bennett L, Yu LX. Predicting human oral bioavailability of a compound: development of a novel quantitative structure-bioavailability relationship. Pharm Res. 2000;17:639–44.

    Article  CAS  PubMed  Google Scholar 

  3. Moda TL, Montanari CA, Andricopulo AD. Hologram QSAR model for the prediction of human oral bioavailability. Bioorgan Med Chem. 2007;15:7738–45.

    Article  CAS  Google Scholar 

  4. Ma CY, Yang SY, Zhang H, Xiang ML, Huang Q, Wei YQ. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA–CG–SVM method. J Pharmaceut Biomed. 2008;47:667–82.

    Article  Google Scholar 

  5. Tian S, Li Y, Wang J, Zhang J, Hou T. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in human based on molecular properties and structural fingerprints. Mol Pharm. 2011;8:841–51.

    Article  CAS  PubMed  Google Scholar 

  6. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev. 2001;46:3–26.

    Article  CAS  Google Scholar 

  7. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23.

    Article  CAS  PubMed  Google Scholar 

  8. Hou T, Wang J, Zhang W, Xu X. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J Chem Inf Model. 2007;47:460–3.

    Article  CAS  PubMed  Google Scholar 

  9. Martin YC. A bioavailability score. J Med Chem. 2005;48:3164–70.

    Article  CAS  PubMed  Google Scholar 

  10. Varma MVS, Obach RS, Rotter C, Miller HR, Chang G, Steyn SJ, et al. Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination. J Med Chem. 2010;53:1098–108.

    Article  CAS  PubMed  Google Scholar 

  11. Paixão P, Gouveia LF, Morais JAG. Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model. Int J Pharm. 2012;429:84–98.

    Article  PubMed  Google Scholar 

  12. Thummel KE, Shen DD, Isoherranen N. Appendix II. Design and optimization of dosage regimens: pharmacokinetic data. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  13. Hou T, Li Y, Zhang W, Wang J. Recent development of in silico predictions of intestinal absorption and bioavailability. Comb Chem High T Scr. 2009;12:497–506.

    CAS  Google Scholar 

  14. Zhu J, Wang J, Li Y, Hou T. Recent progress of in silico predictions of oral bioavailability. Comb Chem High T Scr. 2011;14:362–75.

    CAS  Google Scholar 

  15. CASE Ultra 1.4.4.6 32 bit, Multicase Inc, Beachwood, OH 44122, USA.

  16. PubChem. http://pubchem.ncbi.nlm.nih.gov/

  17. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13:519–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article  Google Scholar 

  19. Vapnik VN. In the nature of statistical learning theory. New York: Springer; 2000.

    Book  Google Scholar 

  20. Kovatcheva A, Golbraikh A, Oloff S, Xiao TD, Zheng W, Wolschann P, et al. Combinatorial QSAR of ambergris fragrance compounds. J Chem Inf Comput Sci. 2004;44:582–95.

    Article  CAS  PubMed  Google Scholar 

  21. Kovatcheva A, Golbraikh A, Oloff S, Feng J, Zheng W, Tropsha A. QSAR modeling of datasets with enantioselective compounds using chirality sensitive molecular descriptors. SAR QSAR Environ Res. 2005;16:93–102.

    Article  CAS  PubMed  Google Scholar 

  22. Votano JR, Parham M, Hall LM, Hall LH, Kier LB, Oloff S, et al. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure information representation. J Med Chem. 2006;49:7169–81.

    Article  CAS  PubMed  Google Scholar 

  23. Dalgaard P. Introductory statistics with R. New York: Springer; 2008.

    Book  Google Scholar 

  24. Zheng W, Tropsha A. Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci. 2000;40:185–94.

    Article  CAS  PubMed  Google Scholar 

  25. Chakravarti SK, Saiakhov RD, Klopman G. Optimizing predictive performance of CASE Ultra expert system models using the applicability domains of individual toxicity alerts. J Chem Inf Model. 2012;52:2609–18.

    Article  CAS  PubMed  Google Scholar 

  26. Saiakhov RD, Chakravarti SK, Klopman G. Effectiveness of CASE Ultra expert system in evaluating adverse effects of drugs. Mol Inf. 2013;32:87–97.

    Article  CAS  Google Scholar 

  27. Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Design. 2007;13:3494–504.

    Article  CAS  Google Scholar 

  28. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A. Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des. 2003;17:241–53.

    Article  CAS  PubMed  Google Scholar 

  29. Sedykh A, Fourches D, Duan J, Hucke O, Garneau M, Zhu H, et al. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013;30:996–1007.

    Article  CAS  PubMed  Google Scholar 

  30. Giacomini KM, Sugiyama Y. Chapter 5. Membrane transporters and drug response. In: Brunton LL, Chabner BA, Knollmann BC, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  31. Zhang L, Fourches D, Sedykh A, Zhu H, Golbraikh A, Ekins S, et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model. 2013;53:475–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fisher RA. The design of experiments. 8th ed. Edinburgh: Oliver and Boyd; 1966.

    Google Scholar 

  33. Shugarts S, Benet LZ. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res. 2009;26:2039–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Inoue M, Morikawa M, Tsuboi M, Ito Y, Sugiura M. Comparative study of human intestinal and hepatic esterases as related to enzymatic properties and hydrolyzing activity for ester-type drugs. Japan J Pharmacol. 1980;30:529–35.

    Article  CAS  Google Scholar 

  35. Dubertret L, Alirezai M, Rostain G, Lahfa M, Forsea D, Niculae BD, et al. The use of lymecycline in the treatment of moderate to severe acne vulgaris: a comparison of the efficacy and safety of two dosing regimens. Eur J Dermatol. 2003;13:44–8.

    CAS  PubMed  Google Scholar 

  36. Spearman C. The proof and measurement of association between two things. Am J Psychol. 1904;15:72–101.

    Article  Google Scholar 

  37. Kornbrot D. Pearson product moment correlation. In: Everitt B, Howell D, editors. Encyclopedia of statistics in behavioral science. Hoboken: Wiley; 2005.

    Google Scholar 

  38. Utvik TIR, Johnsen S. Bioavailability of polycyclic aromatic hydrocarbons in the north sea. Environ Sci Technol. 1999;33:1963–9.

    Article  CAS  Google Scholar 

  39. Herman RB. Theory of hydrophobic bonding. II. Correlation of hydrocarbon solubility in water with solvent cavity surface area. J Phys Chem. 1972;76:2754–9.

    Article  Google Scholar 

  40. Birnbaum L. The role of structure in the disposition of halogenated aromatic xenobiotics. Environ Health Persp. 1985;61:11–20.

    Article  CAS  Google Scholar 

  41. Stillwell WG, Turesky RJ, Sinha R, Skipper PL, Tannenbaum SR. Biomonitoring of heterocyclic aromatic amine metabolites in human urine. Cancer Lett. 1999;143:145–8.

    Article  CAS  PubMed  Google Scholar 

  42. Holland RD, Gehring T, Taylor J, Lake BG, Gooderham NJ, Turesky RJ. Formation of a mutagenic heterocyclic aromatic amine from creatinine in urine of meat eaters and vegetarians. Chem Res Toxicol. 2005;18:579–90.

    Article  CAS  PubMed  Google Scholar 

  43. Saitoh H, Gerard C, Aungst BJ. The secretory intestinal transport of some beta-lactam antibiotics and anionic compounds: a mechanism contributing to poor oral absorption. J Pharmacol Exp Ther. 1996;278:205–11.

    CAS  PubMed  Google Scholar 

  44. Nielsen AB, Frydenvang K, Liljefors T, Buur A, Larsen C. Assessment of the combined approach of N-alkylation and salt formation to enhance aqueous solubility of tertiary amines using bupivacaine as a model drug. Eur J Pharm Sci. 2005;24:85–93.

    Article  CAS  PubMed  Google Scholar 

  45. Sawa M, Mizuno K, Harada H, Tateishi H, Arai Y, Suzuki S, et al. Tryptamine-based human β3-adrenergic receptor agonists. Part 3: improved oral bioavailability via modification of the sulfonamide moiety. Bioorg Med Chem Lett. 2005;15:1061–4.

    Article  CAS  PubMed  Google Scholar 

  46. Wu C, Decker ER, Blok N, Li J, Bourgoyne AR, Bui H, et al. Acyl substitution at the ortho position of anilides enhances oral bioavailability of thiophene sulfonamides: TBC3214, an ETA selective endothelin antagonist. J Med Chem. 2001;44:1211–6.

    Article  CAS  PubMed  Google Scholar 

  47. Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev. 2004;104:3947–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

We thank Kimberlee Moran of Rutgers-Camden for her help with the manuscript preparation for the entire project.

Research reported in this publication was supported, in part, by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number R15ES023148 and the Colgate-Palmolive Grant for Alternative Research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Loading plot using principal components 1 and 2 of MOE descriptors (JPEG 136 kb)

Supplemental Figure 2

Loading plot using principal components 1 and 3 of MOE descriptors (JPEG 129 kb)

Supplemental Figure 3

Loading plot using principal components 2 and 3 of MOE descriptors (JPEG 128 kb)

Supplemental Table I

(DOCX 14 kb)

Supplemental Table II

(XLSX 77 kb)

Supplemental Table III

(DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.T., Sedykh, A., Chakravarti, S.K. et al. Critical Evaluation of Human Oral Bioavailability for Pharmaceutical Drugs by Using Various Cheminformatics Approaches. Pharm Res 31, 1002–1014 (2014). https://doi.org/10.1007/s11095-013-1222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1222-1

KEY WORDS

Navigation