Skip to main content

Granule Cell Migration and Differentiation

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

In the developing cerebellum, granule cells migrate from their birth place to their final destination. The active translocation of granule cells is essential for the formation of cerebellar cortical layers and their proper differentiation. This chapter will review (1) how granule cells migrate from their origin to their resident destinations in the developing cerebellum, (2) the mechanisms involved in normal and abnormal migration of granule cells, and (3) the mechanisms underlying the differentiation of granule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Botia B, Basille M, Allais A, Raoult E, Falluel-Morel A, Galas L, Jolivel V, Wurtz O, Komuro H, Fournier A, Vaudry H, Burel D, Gonzalez B, Vaudry D (2007) Neurotrophic effects of PACAP in the cerebellar cortex. Peptides 28:1746–1752

    Article  PubMed  CAS  Google Scholar 

  • Cameron DB, Galas L, Jiang Y, Raoult E, Vaudry D, Komuro H (2007) Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience 146:697–712

    Article  PubMed  CAS  Google Scholar 

  • Cameron DB, Raoult E, Galas L, Jiang Y, Lee K, Hu T, Vaudry D, Komuro H (2009) Role of PACAP in controlling granule cell migration. Cerebellum 8:433–440

    Article  PubMed  CAS  Google Scholar 

  • Guerrini R, Parrini E (2010) Neuronal migration disorders. Neurobiol Dis 38:154–166

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Kumada T, Cameron DB, Komuro H (2008) Cerebellar granule cell migration and the effects of alcohol. Dev Neurosci 30:7–23

    Article  PubMed  Google Scholar 

  • Komuro H, Kumada T (2005) Ca2+ transients control CNS neuronal migration. Cell Calcium 37:387–393

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1992) Selective role of N-type calcium channels in neuronal migration. Science 257:806–809

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1995) Dynamics of granule cell migration: a confocal microscopic study in acute cerebellar slice preparations. J Neurosci 15:1110–1120

    PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17:275–285

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1998a) Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci 18:1478–1490

    PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1998b) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 37:110–130

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Yacubova E (2003) Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084–1098

    PubMed  CAS  Google Scholar 

  • Komuro H, Yacubova E, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci 21:527–540

    PubMed  CAS  Google Scholar 

  • Kumada T, Komuro H (2004) Completion of neuronal migration regulated by loss of Ca2+ transients. Proc Natl Acad Sci USA 101:8479–8484

    Article  PubMed  CAS  Google Scholar 

  • Kumada T, Lakshmana MK, Komuro H (2006) Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signalings. J Neurosci 26:742–756

    Article  PubMed  CAS  Google Scholar 

  • Kumada T, Jiang Y, Cameron DB, Komuro H (2007) How does alcohol impair neuronal migration? J Neurosci Res 85:465–470

    Article  PubMed  CAS  Google Scholar 

  • Kumada T, Komuro Y, Li Y, Wang Z, Littner Y, Komuro H (2010) Inhibition of cerebellar granule cell turning by alcohol. Neuroscience 170:1328–1344

    Article  PubMed  CAS  Google Scholar 

  • Mellor JR, Merio D, Jones A, Wisden W, Randall AD (1998) Mouse cerebellar granule cell differentiation: electrical activity regulate the GABAA receptor α6 subunit gene. J Neurosci 18:2822–2833

    PubMed  CAS  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Okazawa M (2006) Membrane potential-regulated Ca2+ signaling in development and maturation of mammalian cerebellar granule cells. J Physiol 575(2):389–395

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A golgi and electron microscopic study in Macacus rhesus. J Comp Neurol 141:283–312

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Komuro H (1995) The role of receptor/channel activity in neuronal cell migration. J Neurobiol 26:299–315

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Cameron SR, Komuro H (1994) Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr Opin Neurobiol 4:63–69

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Filippi GD, Armano S, Taglietti V, D’Angelo E (1998) The weaver mutation causes a loss of inward rectifier current regulation in premigratory granule cells of the mouse cerebellum. J Neurosci 18:3537–3547

    PubMed  CAS  Google Scholar 

  • Sato M, Suzuki K, Yamazaki H, Nakanishi S (2005) A pivotal role of calcineurin signaling in development and maturation of postnatal cerebellar granule cells. Proc Natl Acad Sci USA 102:5874–5879

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Suzuki K, Nakanishi S (2006) Expression profile of BDNF-responsive genes during cerebellar granule cell development. Biochem Bioph Res Co 341:304–309

    Article  CAS  Google Scholar 

  • Valiente M, Marin O (2010) Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol 20:68–78

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Foumier A, Chow BK, Hashimoto H, Galas L, Vaudry H (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  CAS  Google Scholar 

  • Yacubova E, Komuro H (2002a) Intrinsic program for migration of cerebellar granule cells in vitro. J Neurosci 22:5966–5981

    PubMed  CAS  Google Scholar 

  • Yacubova E, Komuro H (2002b) Stage-specific control of neuronal migration by somatostatin. Nature 415:77–81

    Article  PubMed  CAS  Google Scholar 

  • Yacubova E, Komuro H (2003) Cellular and molecular mechanisms of cerebellar granule cell migration. Cell Biochem Biophys 37:213–234

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Komuro Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Komuro, Y. et al. (2013). Granule Cell Migration and Differentiation. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_7

Download citation

Publish with us

Policies and ethics