Skip to main content
Log in

Role of PACAP in Controlling Granule Cell Migration

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide, regulates a wide variety of cellular functions, but little is known about its role in neuronal cell migration. Recent studies revealed that PACAP has short-term, cortical layer-specific effects on neuronal cell migration. In this article, we focus on the role of PACAP in controlling the migration of cerebellar granule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.

Similar content being viewed by others

References

  1. Rakic P (1990) Principles of neuronal cell migration. Experientia 46:882–891

    Article  CAS  PubMed  Google Scholar 

  2. Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–9

    Article  CAS  PubMed  Google Scholar 

  3. Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4:277–296

    Article  CAS  PubMed  Google Scholar 

  4. Rakic P (1988) Defects of neuronal migration and the pathogenesis of cortical malformations. Prog Brain Res 73:15–37

    Article  CAS  PubMed  Google Scholar 

  5. Gressens P (2006) Pathogenesis of migration disorders. Curr Opin Neurol 19:135–14

    Article  CAS  PubMed  Google Scholar 

  6. Sheen VL, Ferland RJ, Harney M, Hill RS, Neal J, Banham AH et al (2006) Impaired proliferation and migration in human Miller-Dieker neuronal precursors. Ann Neurol 60:137–144

    Article  CAS  PubMed  Google Scholar 

  7. Rakic P, Cameron SR, Komuro H (1994) Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr Opin Neurobiol 4:63–69

    Article  CAS  PubMed  Google Scholar 

  8. Bagri A, Tessier-Lavigne M (2002) Neuropilins as Semaphorin receptors: in vivo functions in neuronal cell migration and axon guidance. Adv Exp Med Biol 515:13–31

    CAS  PubMed  Google Scholar 

  9. Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483

    Article  CAS  PubMed  Google Scholar 

  10. Cameron DB, Galas L, Jiang Y, Raoult E, Vaudry D, Komuro H (2007) Cerebellar cortical-layer-specific control of neuronal migration by pituitary adenylate cyclase-activating polypeptide. Neuroscience 146:697–712

    Article  CAS  PubMed  Google Scholar 

  11. Botia B, Basille M, Allais A, Raoult E, Falluel-Morel A, Galas L et al (2007) Neurotrophic effects of PACAP in the cerebellar cortex. Peptides 28:1746–1752

    Article  CAS  PubMed  Google Scholar 

  12. Falluel-Morel A, Vaudry D, Aubert N, Galas L, Benard M, Basille M et al (2005) Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proc Natl Acad Sci U S A 102:2637–2642

    Article  CAS  PubMed  Google Scholar 

  13. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52:269–324

    CAS  PubMed  Google Scholar 

  14. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K et al (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648

    Article  CAS  PubMed  Google Scholar 

  15. Pisegna JR, Wank SA (1993) Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc Natl Acad Sci U S A 90:6345–6349

    Article  CAS  PubMed  Google Scholar 

  16. Takeda K, Okamura T, Hasegawa T (1989) Sibs with tetrasomy 18p born to a mother with trisomy 18p. J Med Genet 26:195–197

    Article  CAS  PubMed  Google Scholar 

  17. Salihu HM, Boos R, Schmidt W (1997) Antenatally detectable markers for the diagnosis of autosomally trisomic fetuses in at-risk pregnancies. Am J Perinatol 14:257–261

    Article  CAS  PubMed  Google Scholar 

  18. Lang B, Song B, Davidson W, MacKenzie A, Smith N, McCaig CD et al (2006) Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice. J Clin Invest 116:1924–1934

    Article  CAS  PubMed  Google Scholar 

  19. Allais A, Burel D, Issac ER, Gray SL, Basille M, Ravni A et al (2007) Altered cerebellar development in mice lacking pituitary adenylate cyclase-activating polypeptide. Eur J NeuroSci 25:2604–2618

    Article  PubMed  Google Scholar 

  20. Komuro H, Yacubova E (2003) Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084–1098

    CAS  PubMed  Google Scholar 

  21. Yacubova E, Komuro H (2003) Cellular and molecular mechanisms of cerebellar granule cell migration. Cell Biochem Biophys 37:213–234

    Article  PubMed  Google Scholar 

  22. Komuro H, Yacubova E, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci 21:527–540

    CAS  PubMed  Google Scholar 

  23. Komuro H, Rakic P (1995) Dynamics of granule cell migration: a confocal microscopic study in acute cerebellar slice preparations. J Neurosci 15:1110–1120

    CAS  PubMed  Google Scholar 

  24. Komuro H, Rakic P (1998) Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci 18:1478–1490

    CAS  PubMed  Google Scholar 

  25. Jiang Y, Kumada T, Cameron DB, Komuro H (2008) Cerebellar granule cell migration and the effects of alcohol. Dev Neurosci 30:7–23

    Article  PubMed  CAS  Google Scholar 

  26. Yacubova E, Komuro H (2002) Stage-specific control of neuronal migration by somatostatin. Nature 415:77–81

    Article  CAS  PubMed  Google Scholar 

  27. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  CAS  PubMed  Google Scholar 

  28. Nielsen HS, Hannibal J, Fahrenkrug J (1998) Expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the postnatal and adult rat cerebellar cortex. NeuroReport 9:2639–2642

    Article  CAS  PubMed  Google Scholar 

  29. Basille M, Vaudry D, Coulouarn Y, Jegou S, Lihrmann I, Fournier A et al (2000) Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. J Comp Neurol 425:495–509

    Article  CAS  PubMed  Google Scholar 

  30. Basille M, Cartier D, Vaudry D, Lihrmann I, Fournier A, Freger P et al (2006) Localization and characterization of pituitary adenylate cyclase-activating polypeptide receptors in the human cerebellum during development. J Comp Neurol 496:468–478

    Article  CAS  PubMed  Google Scholar 

  31. Basille M, Gonzalez BJ, Leroux P, Jeandel L, Fournier A, Vaudry H (1993) Localization and characterization of PACAP receptors in the rat cerebellum during development: evidence for a stimulatory effect of PACAP on immature cerebellar granule cells. Neuroscience 57:329–338

    Article  CAS  PubMed  Google Scholar 

  32. Basille M, Gonzalez BJ, Fournier A, Vaudry H (1994) Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the rat cerebellum: a quantitative autoradiographic study. Dev Brain Res 82:81–89

    Article  CAS  Google Scholar 

  33. Basille M, Vaudry D, Coulouarn Y, Jegou S, Lihrmann I, Fournier H et al (2000) Distribution of PACAP receptor mRNAs and PACAP binding sites in the rat brain during development. Ann N Y Acad Sci 921:359–369

    Google Scholar 

  34. Mei YA (1999) High-voltage-activated calcium current and its modulation by dopamine D4 and pituitary adenylate cyclase-activating polypeptide receptors in cerebellar granule cells. Chung Kuo Yao Li Hsueh Pao 20:3–9

    CAS  PubMed  Google Scholar 

  35. Basille M, Gonzalez BJ, Desrues L, Demas M, Fournier A, Vaudry H (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates adenylyl cyclase and phospholipase C activity in rate cerebellar neuroblasts. J Neurochem 65:1318–1324

    Article  CAS  PubMed  Google Scholar 

  36. Komuro H, Rakic P (1998) Orchestration of neuronal migration by activity of ion channels, neurotransmitter receptors, and intracellular Ca2+ fluctuations. J Neurobiol 37:110–130

    Article  CAS  PubMed  Google Scholar 

  37. Kumada T, Komuro H (2004) Completion of neuronal migration regulated by loss of Ca2+ transients. Proc Natl Acad Sci U S A 101:8479–8484

    Article  CAS  PubMed  Google Scholar 

  38. Kumada T, Lakshmana MK, Komuro H (2006) Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signalings. J Neurosci 6:742–756

    Article  CAS  Google Scholar 

  39. Dautzenberg FM, Hauger RL (2001) G-protein-coupled receptor kinase 3- and protein kinase C-mediated desensitization of the PACAP receptor type 1 in human Y-79 retinoblastoma cells. Neuropharmacology 40:394–407

    Article  CAS  PubMed  Google Scholar 

  40. Shintani N, Hashimoto H, Kunugi A, Koyama Y, Yamamoto K, Tomimoto S et al (2000) Desensitization, surface expression, and glycosylation of a functional, epitope-tagged type I PACAP (PAC(1)) receptor. Biochem Biophys Acta 1509:195–202

    Article  CAS  PubMed  Google Scholar 

  41. Chuang TT, Paolucci L, Blasi A (1996) Inhibition of G protein-coupled receptor kinase subtypes by Ca2+/calmodulin. J Biol Chem 71:28691–28696

    Google Scholar 

  42. Favit A, Scapagnini U, Canonico PL (1995) Pituitary adenylate cyclase-activating polypeptide activates different signal transducing mechanisms in cultured cerebellar granule cells. Neuroendocrinology 61:377–382

    Article  CAS  PubMed  Google Scholar 

  43. Komuro H, Rakic P (1996) Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17:275–285

    Article  CAS  PubMed  Google Scholar 

  44. Kumada T, Jiang Y, Cameron DB, Komuro H (2007) How does alcohol impair neuronal migration? J Neurosci Res 85:465–470

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Komuro for critically reading the manuscript. Work reported in this review was supported by a Pilot Research Award (PP1450) from the National Multiple Sclerosis Society and a grant (R01 ES015612) from National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Komuro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, D.B., Raoult, E., Galas, L. et al. Role of PACAP in Controlling Granule Cell Migration. Cerebellum 8, 433–440 (2009). https://doi.org/10.1007/s12311-009-0121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0121-9

Keywords

Navigation