Skip to main content

Mitochondrial Targeting of Antioxidants

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

The mitochondrial matrix is the only intracellular compartment that is negatively charged compared to the cytosol. This is why any cation penetrating the mitochondrial membrane must be accumulated inside mitochondria. This principle was used to construct mitochondria-targeted antioxidants (mtAOX) composed of an antioxidant moiety and a penetrating cation with delocalized positive charge. The mtAOX most active in various in vitro tests are MitoQ and SkQ, cationic derivatives of mitochondrial ubiquinone and chloroplast plastoquinone, respectively. Their high activities are due to the fact that the reduced (active) form of MitoQ and SkQ can be regenerated by the mitochondrial respiratory chain from their oxidized forms produced as a result of the antioxidant action of these quinones. An additional important advantage of SkQ is that the “window” between anti- and prooxidant activities of this compound is very much wider than that of MitoQ. Both MitoQ and SkQ have already been tested on animals to treat various diseases that seem to be caused by reactive oxygen species (ROS) produced by mitochondria. In several cases, the use of SkQ was more successful than MitoQ. In particular, it was found that SkQ prolongs the life span of various organisms (from fungi to mammals) and retards (sometimes even reverses) a group of traits typical for aging. Clinical trials of drops of an aqueous solution of SkQ as a medicine have already given a positive result in the case of the age-related disease “dry-eye syndrome.” The SkQ1-containing drops of Visomitin are now available in Russian drugstores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BLM:

Bilayer phospholipid membranes

C12R1:

Dodecylrhodamine 19

C12TPP:

Dodecyltriphenylphosphonium

DMQ:

3-demethoxy ubiquinonyl decyltriphenylphosphonium

ETC:

Mitochondrial electron transport chain

GSH-Px:

Glutathione peroxidase

GSSG-R:

Glutathione reductase

HO :

Hydroxyl radical

IR:

Ischemia–reperfusion

LP:

Low pathogen

MDA:

Malondialdehyde

MitoBMPO:

Mitochondria-targeted spin trap 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide

MitoDEPMPO:

Mitochondria-targeted spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide

MitoPBN:

Mitochondria-targeted derivative of spin trap α-phenyl-N-tert-butylnitrone

MitoQ:

[10-(6′-ubiquinonyl)] decyltriphenylphosphonium

MitoQH2 :

Reduced form of MitoQ

MitoSOD:

Mitochondria-targeted version of the superoxide dismutase mimetic M40403

MitoSpin:

Mitochondria-targeted spin trap 3′,3′-dibutyl-2′-oxy-3′H-isoindol-5′-yloxy)butyl

MitoVitE:

[2-(3′,4′-dihydro-6′-hydroxy-2′,5′,7′,8′-tetramethyl-2H-1-benzopyran-2′-yl)ethyl] triphenylphosphonium

mtAOX:

Mitochondria-targeted antioxidants

NAC:

N-acetylcysteine

O2 •− :

Superoxide anion

ROS:

Reactive oxygen species

SkQ:

Cationic derivative of plastoquinone or methylplastoquinone

SkQ2M:

Plastoquinonyl decylmethylcarnitine

SkQ3:

5-methyl plastoquinonyl decyltriphenylphosphonium

SkQ4:

Plastoquinonyl decyltributylammonium

SkQB:

13-[9-(6′-plastoquinonyl) nonyloxycarbonylmethyl] berberine

SkQH2 :

Reduced form of SkQ

SkQP:

13-[9-(6′-plastoquinonyl) nonyloxycarbonylmethyl] palmatine

SkQR1:

10-(6′-plastoquinonyl) decylrhodamine 19

SkQR4:

10-(6′-plastoquinonyl) decylrhodamine B

SOD:

Superoxide dismutase

SPF:

Specific pathogen free

TEMPO/TEMPOL:

Mitochondria-targeted nitroxides

Δψ:

Transmembrane electric potential difference

References

  • Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19(9):1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Agapova LS, Chernyak BV, Domnina LV, Dugina VB, Efimenko AY, Fetisova EK, Ivanova OY, Kalinina NI, Khromova NV, Kopnin BP, Kopnin PB, Korotetskaya MV, Lichinitser MR, Lukashev AL, Pletjushkina OY, Popova EN, Skulachev MV, Shagieva GS, Stepanova EV, Titova EV, Tkachuk VA, Vasiliev JM, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells. Biochem (Mosc) 73(12):1300–1316

    Article  CAS  Google Scholar 

  • Anisimov VN, Bakeeva LE, Egormin PA, Filenko OF, Isakova EF, Manskikh VN, Mikhelson VM, Panteleeva AA, Pasyukova EG, Pilipenko DI, Piskunova TS, Popovich IG, Roshchina NV, Rybina OY, Saprunova VB, Samoylova TA, Semenchenko AV, Skulachev MV, Spivak IM, Tsybul’ko EA, Tyndyk ML, Vyssokikh MY, Yurova MN, Zabezhinsky MA, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence. Biochem (Mosc) 73(12):1329–1342

    Article  CAS  Google Scholar 

  • Anikin IV, Popovich IG, Tyndyk ML, Zabezhinsky MA, Yurova MN, Skulachev VP, Anisimov VN (2013) Effect of plastoquin one derivative SkQ1 on Benzo(a)pyrene-induced soft tissue carcinogenesis. Voprosy onkologii [in Russian] 59(1):89–93

    Google Scholar 

  • Anisimov VN, Egorov MV, Krasilshchikova MS, Lyamzaev KG, Manskikh VN, Moshkin MP, Novikov EA, Popovich IG, Rogovin KA, Shabalina IG, Shekarova ON, Skulachev MV, Titova TV, Vygodin VA, Vyssokikh MY, Yurova MN, Zabezhinsky MA, Skulachev VP (2011) Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging 3(11):1110–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OY, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Roginsky VA, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Vassiliev JM, Vyssokikh MY, Yaguzhinsky LS, Zamyatnin AA Jr, Skulachev VP (2008a) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochem (Mosc) 73(12):1273–1287

    Article  CAS  Google Scholar 

  • Antonenko YN, Avetisyan AV, Cherepanov DA, Knorre DA, Korshunova GA, Markova OV, Ojovan SM, Perevoshchikova IV, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Smirnova EA, Sobko AA, Sumbatyan NV, Severin FF, Skulachev VP (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem 286(20):17831–17840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Antonenko YN, Roginsky VA, Pashkovskaya AA, Rokitskaya TI, Kotova EA, Zaspa AA, Chernyak BV, Skulachev VP (2008b) Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. J Membr Biol 222(3):141–149

    Article  CAS  PubMed  Google Scholar 

  • Asin-Cayuela J, Manas AR, James AM, Smith RA, Murphy MP (2004) Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett 571(1–3):9–16

    Article  CAS  PubMed  Google Scholar 

  • Bakeeva LE, Barskov IV, Egorov MV, Isaev NK, Kapelko VI, Kazachenko AV, Kirpatovsky VI, Kozlovsky SV, Lakomkin VL, Levina SB, Pisarenko OI, Plotnikov EY, Saprunova VB, Serebryakova LI, Skulachev MV, Stelmashook EV, Studneva IM, Tskitishvili OV, Vasilyeva AK, Victorov IV, Zorov DB, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochem (Mosc) 73(12):1288–1299

    Article  CAS  Google Scholar 

  • Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2008) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev (2):CD007176. doi:10.1002/14651858.CD004183.pub3

    Google Scholar 

  • Burns RJ, Smith RA, Murphy MP (1995) Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch Biochem Biophys 322(1):60–68

    Article  CAS  PubMed  Google Scholar 

  • Chacko BK, Reily C, Srivastava A, Johnson MS, Ye Y, Ulasova E, Agarwal A, Zinn KR, Murphy MP, Kalyanaraman B, Darley-Usmar V (2010) Prevention of diabetic nephropathy in Ins2(+/−)(AkitaJ) mice by the mitochondria-targeted therapy MitoQ. Biochem J 432(1):9–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chacko BK, Srivastava A, Johnson MS, Benavides GA, Chang MJ, Ye Y, Jhala N, Murphy MP, Kalyanaraman B, Darley-Usmar VM (2011) Mitochondria-targeted ubiquinone (MitoQ) decreases ethanol-dependent micro and macro hepatosteatosis. Hepatology 54(1):153–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B (2009) Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J 96(4):1388–1398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chernyak BV, Antonenko YN, Galimov ER, Domnina LV, Dugina VB, Zvyagilskaya RA, Ivanova OY, Izyumov DS, Lyamzaev KG, Pustovidko AV, Rokitskaya TI, Rogov AG, Severina II, Simonyan RA, Skulachev MV, Tashlitsky VN, Titova EV, Trendeleva TA, Shagieva GS (2012) Novel mitochondria-targeted compounds composed of natural constituents: conjugates of plant alkaloids berberine and palmatine with plastoquinone. Biochemistry (Mosc) 77(9):983–995

    Article  CAS  Google Scholar 

  • Chernyak BV, Antonenko YN, Domnina LV, Ivanova OY, Lyamzaev KG, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Trendeleva TA, Zvyagilskaya RA (2013) Novel penetrating cations for targeting mitochondria. Curr Pharm Des 19(15): 2795–2806

    Article  CAS  PubMed  Google Scholar 

  • Cocheme HM, Murphy MP (2010) Can antioxidants be effective therapeutics? Curr Opin Investig Drugs 11(4):426–431

    CAS  PubMed  Google Scholar 

  • Covey MV, Murphy MP, Hobbs CE, Smith RA, Oorschot DE (2006) Effect of the mitochondrial antioxidant, Mito Vitamin E, on hypoxic-ischemic striatal injury in neonatal rats: a dose-response and stereological study. Exp Neurol 199(2):513–519

    Article  CAS  PubMed  Google Scholar 

  • Demianenko IA, Vasilieva TV, Domnina LV, Dugina VB, Egorov MV, Ivanova OY, Ilinskaya OP, Pletjushkina OY, Popova EN, Sakharov IY, Fedorov AV, Chernyak BV (2010) Novel mitochondria-targeted antioxidants, “Skulachev-ion” derivatives, accelerate dermal wound healing in animals. Biochem (Mosc) 75(3):274–280

    Article  CAS  Google Scholar 

  • Dhanasekaran A, Kotamraju S, Kalivendi SV, Matsunaga T, Shang T, Keszler A, Joseph J, Kalyanaraman B (2004) Supplementation of endothelial cells with mitochondria-targeted antioxidants inhibit peroxide-induced mitochondrial iron uptake, oxidative damage, and apoptosis. J Biol Chem 279(36):37575–37587

    Article  CAS  PubMed  Google Scholar 

  • Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107(1):106–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dzyubinskaya EV, Ionenko IF, Kiselevsky DB, Samuilov VD, Samuilov FD (2013) Mitochondria-addressed cations decelerate the leaf senescence and death in Arabidopsis thaliana and increase the vegetative period and improve crop structure of the wheat Triticum aestivum. Biochemistry (Mosc) 78(1):68–74

    Article  CAS  Google Scholar 

  • Esplugues JV, Rocha M, Nunez C, Bosca I, Ibiza S, Herance JR, Ortega A, Serrador JM, D’Ocon P, Victor VM (2006) Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Circ Res 99(10):1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Farbstein D, Kozak-Blickstein A, Levy AP (2010) Antioxidant vitamins and their use in preventing cardiovascular disease. Molecules 15(11):8098–8110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filipovska A, Kelso GF, Brown SE, Beer SM, Smith RA, Murphy MP (2005) Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J Biol Chem 280(25):24113–24126

    Article  CAS  PubMed  Google Scholar 

  • Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M, Lockhart MM, Frampton CM, Taylor KM, Smith RA, Murphy MP (2010) The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int 30(7):1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Chandran K, Kalivendi SV, Joseph J, Antholine WE, Hillard CJ, Kanthasamy A, Kalyanaraman B (2010) Neuroprotection by a mitochondria-targeted drug in a Parkinson’s disease model. Free Radic Biol Med 49(11):1674–1684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertens 54(2):322–328

    Article  CAS  Google Scholar 

  • Green DE (1974) The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta 346(1):27–78

    Article  CAS  PubMed  Google Scholar 

  • Hardy M, Chalier F, Ouari O, Finet JP, Rockenbauer A, Kalyanaraman B, Tordo P (2007) Mito-DEPMPO synthesized from a novel NH2-reactive DEPMPO spin trap: a new and improved trap for the detection of superoxide. Chem Commun (Camb) 10:1083–1085

    Article  Google Scholar 

  • James AM, Cocheme HM, Smith RA, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280(22):21295–21312

    Article  CAS  PubMed  Google Scholar 

  • James AM, Sharpley MS, Manas AR, Frerman FE, Hirst J, Smith RA, Murphy MP (2007) Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 282(20):14708–14718

    Article  CAS  PubMed  Google Scholar 

  • Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17(13):1972–1974

    CAS  PubMed  Google Scholar 

  • Kapay NA, Isaev NK, Stelmashook EV, Popova OV, Zorov DB, Skrebitsky VG, Skulachev VP (2011) In vivo injected mitochondria-targeted antioxidant SkQR1 prevents the β-amyloid-induced decay of the long-term potentiation in rat hippocampal slices. Biochem (Mosc) 76(8):1695–1699

    Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276(7):4588–4596

    Article  CAS  PubMed  Google Scholar 

  • Kolosova NG, Shcheglova TV, Sergeeva SV, Loskutova LV (2006) Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats. Neurobiol Aging 27(9):1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Kopnin BP, Kopnin PB, Khromova NV, Agapova LS (2008) Multifaced р53: variety of forms, functions, tumor-suppressive and oncogenic activities. Clin Oncohemat 1(1):2–9

    Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Levitsky DO, Skulachev VP (1972) Carnitine: the carrier transporting fatty acyls into mitochondria by means of an electrochemical gradient of H+. Biochim Biophys Acta 275(1):33–50

    Article  CAS  PubMed  Google Scholar 

  • Liberman EA, Skulachev VP (1970) Conversion of biomembrane-produced energy into electric form. IV. General discussion. Biochim Biophys Acta 216(1):30–42

    Article  CAS  PubMed  Google Scholar 

  • Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222(5198):1076–1078

    Article  CAS  PubMed  Google Scholar 

  • Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6(11):866–872

    Article  CAS  PubMed  Google Scholar 

  • Lowes DA, Thottakam BM, Webster NR, Murphy MP, Galley HF (2008) The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med 45(11):1559–1565

    Article  CAS  PubMed  Google Scholar 

  • Lyamzaev KG, Pustovidko AV, Simonyan RA, Rokitskaya TI, Domnina LV, Ivanova OY, Severina II, Sumbatyan NV, Korshunova GA, Tashlitsky VN, Roginsky VA, Antonenko YN, Skulachev MV, Chernyak BV, Skulachev VP (2011) Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine. Pharm Res 28(11):2883–2895

    Article  CAS  PubMed  Google Scholar 

  • Malygin VL, Iskandirova AS, Khomeriki NS, Smirnova EA, Antonenko AA (2011) Personality features in adolescents with internet addiction. Zh Nevrol Psikhiatr Im SS Korsakova 111(4):105–108

    CAS  Google Scholar 

  • Mao G, Kraus GA, Kim I, Spurlock ME, Bailey TB, Beitz DC (2011) Effect of a mitochondria-targeted vitamin E derivative on mitochondrial alteration and systemic oxidative stress in mice. Br J Nutr 106(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Kraus GA, Kim I, Spurlock ME, Bailey TB, Zhang Q, Beitz DC (2010) A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice. J Nutr 140(8):1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Mitchell T, Rotaru D, Saba H, Smith RA, Murphy MP, MacMillan-Crow LA (2011) The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. J Pharmacol Exp Ther 336(3):682–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K, Buckingham JA, Taylor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RA, Brand MD (2003) Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem 278(49):48534–48545

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  CAS  PubMed  Google Scholar 

  • Neroev VV, Archipova MM, Bakeeva LE, Fursova A, Grigorian EN, Grishanova AY, Iomdina EN, Ivashchenko Zh N, Katargina LA, Khoroshilova-Maslova IP, Kilina OV, Kolosova NG, Kopenkin EP, Korshunov SS, Kovaleva NA, Novikova YP, Philippov PP, Pilipenko DI, Robustova OV, Saprunova VB, Senin II, Skulachev MV, Sotnikova LF, Stefanova NA, Tikhomirova NK, Tsapenko IV, Shchipanova AI, Zinovkin RA, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals. Biochem (Mosc) 73(12):1317–1328

    Article  CAS  Google Scholar 

  • Plotnikov EY, Silachev DN, Chupyrkina AA, Danshina MI, Jankauskas SS, Morosanova MA, Stelmashook EV, Vasileva AK, Goryacheva ES, Pirogov YA, Isaev NK, Zorov DB (2010) New-generation Skulachev ions exhibiting nephroprotective and neuroprotective properties. Biochem (Mosc) 75(2):145–150

    Article  CAS  Google Scholar 

  • Plotnikov EY, Chupyrkina AA, Jankauskas SS, Pevzner IB, Silachev DN, Skulachev VP, Zorov DB (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim Biophys Acta 1812(1):77–86

    Article  CAS  PubMed  Google Scholar 

  • Plotnikov EY, Chupyrkina AA, Pevzner IB, Isaev NK, Zorov DB (2009) Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim Biophys Acta 1792(8):796–803

    Article  CAS  PubMed  Google Scholar 

  • Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Trendeleva TA, Lyamzaev KG, Antonenko YN, Rogov AG, Zvyagilskaya RA, Skulachev VP, Chernyak BV (2012) Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria. Mitochondrion doi:10.1016/j.mito.2012.09.006

    Google Scholar 

  • Quin C, Trnka J, Hay A, Murphy MP, Hartley RC (2009) Synthesis of a mitochondria-targeted spin trap using a novel Parham-type cyclization. Tetrahedron 65(39):8154–8160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rocha M, Hernandez-Mijares A, Garcia-Malpartida K, Banuls C, Bellod L, Victor VM (2010) Mitochondria-targeted antioxidant peptides. Curr Pharm Des 16(28):3124–3131

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Cuenca S, Cocheme HM, Logan A, Abakumova I, Prime TA, Rose C, Vidal-Puig A, Smith AC, Rubinsztein DC, Fearnley IM, Jones BA, Pope S, Heales SJ, Lam BY, Neogi SG, McFarlane I, James AM, Smith RA, Murphy MP (2010) Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med 48(1):161–172

    Article  CAS  PubMed  Google Scholar 

  • Rokitskaya TI, Klishin SS, Severina II, Skulachev VP, Antonenko YN (2008) Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes. J Membr Biol 224(1–3):9–19

    Article  CAS  PubMed  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11(12):1306–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salvemini D, Wang ZQ, Zweier JL, Samouilov A, Macarthur H, Misko TP, Currie MG, Cuzzocrea S, Sikorski JA, Riley DP (1999) A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 286(5438):304–306

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva S, Bagryanskaya E, Korbolina E, Kolosova N (2006) Development of behavioural dysfunctions in accelerated-senescence OXYS rats is associated with early postnatal alterations in brain phosphate metabolism. Exp Gerontol 41(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Severin FF, Hyman AA (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr Biol 12(7):R233–R235

    Article  CAS  PubMed  Google Scholar 

  • Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, Vyssokikh MY, Pustovidko AV, Markova OV, Yaguzhinsky LS, Korshunova GA, Sumbatyan NV, Skulachev MV, Skulachev VP (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc Natl Acad Sci USA 107(2):663–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Severin SE, Skulachev VP, Iaguzhinskii LS (1970) Possible role of carnitine in the transport of fatty acids through the mitochondrial membrane. Biokhimiia 35(6):1250–1253

    CAS  PubMed  Google Scholar 

  • Severina II, Muntyan MS, Lewis K, Skulachev VP (2001) Transfer of cationic antibacterial agents berberine, palmatine, and benzalkonium through bimolecular planar phospholipid film and Staphylococcus aureus membrane. IUBMB Life 52(6):321–324

    Article  CAS  PubMed  Google Scholar 

  • Shipounova IN, Svinareva DA, Petrova TV, Lyamzaev KG, Chernyak BV, Drize NI, Skulachev VP (2010) Reactive oxygen species produced in mitochondria are involved in age-dependent changes of hematopoietic and mesenchymal progenitor cells in mice. A study with the novel mitochondria-targeted antioxidant SkQ1. Mech Ageing Dev 131(6):415–421

    Article  CAS  PubMed  Google Scholar 

  • Siler-Marsiglio KI, Pan Q, Paiva M, Madorsky I, Khurana NC, Heaton MB (2005) Mitochondrially targeted vitamin E and vitamin E mitigate ethanol-mediated effects on cerebellar granule cell antioxidant defense systems. Brain Res 1052(2):202–211

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (1988) Membrane bioenergetics. Springer, Berlin

    Book  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29(2):169–202

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (2003) Aging and the programmed death phenomena. In: Nystrom T, Osiewacz HD (eds) Model systems in aging. Springer-Verlag, Berlin, pp 191–238

    Chapter  Google Scholar 

  • Skulachev VP (2007) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochem (Mosc) 72(12):1385–1396

    Article  CAS  Google Scholar 

  • Skulachev VP (2012a) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis 28(2):283–289

    CAS  PubMed  Google Scholar 

  • Skulachev VP (2012b) What is “phenoptosis” and how to fight it? Biochem (Mosc) 77(7):689–706

    Article  CAS  Google Scholar 

  • Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787(5):437–461

    Article  CAS  PubMed  Google Scholar 

  • Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA Jr, Zorov DB, Skulachev VP (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12(6):800–826

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP, Antonenko YN, Cherepanov DA, Chernyak BV, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Pletjushkina OY, Roginsky VA, Rokitskaya TI, Severin FF, Severina II, Simonyan RA, Skulachev MV, Sumbatyan NV, Sukhanova EI, Tashlitsky VN, Trendeleva TA, Vyssokikh MY, Zvyagilskaya RA (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta 1797(6–7):878–889

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP, Bakeeva LE, Chernyak BV, Domnina LV, Minin AA, Pletjushkina OY, Saprunova VB, Skulachev IV, Tsyplenkova VG, Vasiliev JM, Yaguzhinsky LS, Zorov DB (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 256–257(1–2):341–358

    Article  PubMed  Google Scholar 

  • Skulachev VP, Longo VD (2005) Aging as a mitochondria-mediated atavistic program: can aging be switched off? Ann N Y Acad Sci 1057:145–164

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Porteous CM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263(3):709–716

    Article  CAS  PubMed  Google Scholar 

  • Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM (2010) A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord 25(11):1670–1674

    Article  PubMed  Google Scholar 

  • Stefanova NA, Fursova A, Kolosova NG (2010) Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats. J Alzheimer’s Dis 21(2):479–491

    CAS  Google Scholar 

  • Supinski GS, Murphy MP, Callahan LA (2009) MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297(4):R1095–R1102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trendeleva TA, Sukhanova EI, Rogov AG, Zvyagilskaya RA, Seveina II, Ilyasova TM, Cherepanov DA, Skulachev VP (2012) Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes. Mitochondrion doi: 10.1016/j.mito.2012.10.006

    Google Scholar 

  • Trnka J, Blaikie FH, Smith RA, Murphy MP (2008) A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med 44(7):1406–1419

    Article  CAS  PubMed  Google Scholar 

  • Vergeade A, Mulder P, Vendeville-Dehaudt C, Estour F, Fortin D, Ventura-Clapier R, Thuillez C, Monteil C (2010) Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: prevention by the targeted antioxidant MitoQ. Free Radic Biol Med 49(5):748–756

    Article  CAS  PubMed  Google Scholar 

  • Vlachantoni D, Bramall AN, Murphy MP, Taylor RW, Shu X, Tulloch B, Van Veen T, Turnbull DM, McInnes RR, Wright AF (2011) Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet 20(2):322–335

    Article  CAS  PubMed  Google Scholar 

  • Wani WY, Gudup S, Sunkaria A, Bal A, Singh PP, Kandimalla RJ, Sharma DR, Gill KD (2011) Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain. Neuropharmacol 61(8):1193–1201

    Article  CAS  Google Scholar 

  • Xu Y, Kalyanaraman B (2007) Synthesis and ESR studies of a novel cyclic nitrone spin trap attached to a phosphonium group-a suitable trap for mitochondria-generated ROS? Free Radic Res 41(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Yani EV, Katargina LA, Chesnokova NB, Beznos OV, Savchenko AYU, Vygodin VA, Gudkova EYu, Zamyatnin AA Jr, Skulachev MV (2012) The first experience of using the drug Vizomitin in the treatment of ‘dry eye’ Pract Med [in Russian] 59(1):134–137

    Google Scholar 

  • Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Skulachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Zinovkin, R.A. et al. (2014). Mitochondrial Targeting of Antioxidants. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_9

Download citation

Publish with us

Policies and ethics