Skip to main content
Log in

Protective Effects of Mitochondria-Targeted Antioxidant SkQ in Aqueous and Lipid Membrane Environments

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The antioxidant activity of mitochondria-targeted small molecules, SkQ1 and MitoQ (conjugates of a lipophilic decyltriphenylphosphonium cation with an antioxidant moiety of a plastoquinone and ubiquinone, respectively), was studied in aqueous solution and in a lipid environment, i.e., micelles, liposomes and planar bilayer lipid membranes. Reactive oxygen species (ROS) were generated by azo initiators or ferrous ions with or without tert-butyl-hydroperoxide (t-BOOH). Chemiluminescence, fluorescence, oxygen consumption and inactivation of gramicidin peptide channels were measured to detect antioxidant activity. In all of the systems studied, SkQ1 was shown to effectively scavenge ROS. The scavenging was inherent to the reduced form of the quinone (SkQ1H2). In the majority of the above model systems, SkQ1 exhibited higher antioxidant activity than MitoQ. It is concluded that SkQ1H2 operates as a ROS scavenger in both aqueous and lipid environments, being effective at preventing ROS-induced damage to membrane lipids as well as membrane-embedded peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MitoQ:

10-(6′-Ubiquinonyl)decyltriphenylphosphonium

SkQ1:

10-(6′-Plastoquinonyl)decyltriphenylphosphonium

CoQ1:

Ubiquinone-1

BLM:

Bilayer lipid membrane

ROS:

Reactive oxygen species

ML:

Methyl ester of linoleate

AAPH:

2,2′-Azobis(2-amidinopropane)dihydrochloride

AlPcS3:

Aluminum phthalocyanine trisulfonate

BR:

Rose bengal

MB:

Methylene blue

DPhPC:

Diphytanoylglycerophosphocholine

DPhPG:

Diphytanoylphosphatidylglycerol

TBARS:

Thiobarbituric acid-reactive species

t-BOOH:

Tert-butyl-hydroperoxide

References

  • Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Asin-Cayuela J, Manas AR, James AM, Smith RA, Murphy MP (2004) Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett 571:9–16

    Article  PubMed  CAS  Google Scholar 

  • Brame CJ, Boutaud O, Davies SS, Yang T, Oates JA, Roden D, Roberts LJ (2004) Modification of proteins by isoketal-containing oxidized phospholipids. J Biol Chem 279:13447–13451

    Article  PubMed  CAS  Google Scholar 

  • Chernyak BV, Izyumov DS, Lyamzaev KG, Pashkovskaya AA, Pletjushkina OY, Antonenko YN, Sakharov DV, Wirtz KW, Skulachev VP (2006) Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochim Biophys Acta 1757:525–534

    Article  PubMed  CAS  Google Scholar 

  • Choksi KB, Nuss JE, Boylston WH, Rabek JP, Papaconstantinou J (2007) Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes. Free Radic Biol Med 43:1423–1438

    Article  PubMed  CAS  Google Scholar 

  • Drachev LA, Dracheva SV, Kaulen AD (1993) pH dependence of the formation of an M-type intermediate in the photocycle of 13-cis-bacteriorhodopsin. FEBS Lett 332:67–70

    Article  PubMed  CAS  Google Scholar 

  • Drummen GP, van Liebergen LC, Op den Kamp JA, Post JA (2002) C11-BODIPY(581/591), an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 33:473–490

    Article  PubMed  CAS  Google Scholar 

  • Ernst A, Stolzing A, Sandig G, Grune T (2004) Antioxidants effectively prevent oxidation-induced protein damage in OLN 93 cells. Arch Biochem Biophys 421:54–60

    Article  PubMed  CAS  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204

    PubMed  Google Scholar 

  • Foley MS, Beeby A, Parker AW, Bishop SM, Phillips D (1997) Excited triplet state photophysics of the sulphonated aluminium phathalocyanines bound to human serum albumin. J Photochem Photobiol B 38:10–17

    Article  PubMed  CAS  Google Scholar 

  • Frei B, Kim MC, Ames BN (1990) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA 87:4879–4883

    Article  PubMed  CAS  Google Scholar 

  • Fukuda K, Davies SS, Nakajima T, Ong BH, Kupershmidt S, Fessel J, Amarnath V, Anderson ME, Boyden PA, Viswanathan PC, Roberts LJ, Balser JR (2005) Oxidative mediated lipid peroxidation recapitulates proarrhythmic effects on cardiac sodium channels. Circ Res 97:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Gabrielli D, Belisle E, Severino D, Kowaltowski AJ, Baptista MS (2004) Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem Photobiol 79:227–232

    Article  PubMed  CAS  Google Scholar 

  • Gandin E, Lion Y, Van de Vorst A (1983) Quantum yield of singlet oxygen production by xanthene derivatives. Photochem Photobiol 37:271–278

    Article  CAS  Google Scholar 

  • Hladky SB, Haydon DA (1984) Ion movements in gramicidin channels. Curr Topics Membr Transport 21:327–372

    CAS  Google Scholar 

  • Hundal T, Forsmark-Andree P, Ernster L, Andersson B (1995) Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes. Arch Biochem Biophys 324:117–122

    Article  PubMed  CAS  Google Scholar 

  • Idowu M, Ogunsipe A, Nyokong T (2007) Excited state dynamics of zinc and aluminum phthalocyanine carboxylates. Spectrochim Acta A Mol Biomol Spectrosc 68:995–999

    Article  PubMed  CAS  Google Scholar 

  • James AM, Sharpley MS, Manas AR, Frerman FE, Hirst J, Smith RA, Murphy MP (2007) Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem 282:14708–14718

    Article  PubMed  CAS  Google Scholar 

  • Kagan VE, Serbinova EA, Koynova GM, Kitanova SA, Tyurin VA, Stoytchev TS, Quinn PJ, Packer L (1990) Antioxidant action of ubiquinol homologues with different isoprenoid chain length in biomembranes. Free Radic Biol Med 9:117–126

    Article  PubMed  CAS  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  PubMed  CAS  Google Scholar 

  • Kotova EA, Antonenko YN (2005) Sensitized photoinactivation of gramicidin channels: technique and applications. In: Tien HT, Ottova-Leitmannova A (eds) Advances in planar lipid bilayers and liposomes. Academic Press, Amsterdam, pp 159–180

    Google Scholar 

  • Kotova EA, Rokitskaya TI, Antonenko YN (2000) Two phases of gramicidin photoinactivation in bilayer lipid membranes in the presence of a photosensitizer. Membr Cell Biol 13:411–420

    PubMed  CAS  Google Scholar 

  • Krasowska A, Rosiak D, Szkapiak K, Lukaszewicz M (2000) Chemiluminescence detection of peroxyl radicals and comparison of antioxidant activity of phenolic compounds. Curr Topics Biophys 24:89–95

    CAS  Google Scholar 

  • Kruk J, Jemiola-Rzeminska M, Strzalka K (1997) Plastoquinol and alpha-tocopherol quinol are more active than ubiquinol and alpha-tocopherol in inhibition of lipid peroxidation. Chem Phys Lipids 87:73–80

    Article  CAS  Google Scholar 

  • Kunz L, Zeidler U, Haegele K, Przybylski M, Stark G (1995) Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation. Biochemistry 34:11895–11903

    Article  PubMed  CAS  Google Scholar 

  • Laeuger P, Benz R, Stark G, Bamberg E, Jordan PC, Fahr A, Brock W (1981) Relaxation studies of ion transport systems in lipid bilayer membranes. Q Rev Biophys 14:513–598

    CAS  Google Scholar 

  • Lambert CR, Kochevar IE (1997) Electron transfer quenching of the rose bengal triplet state. Photochem Photobiol 66:15–25

    Article  PubMed  CAS  Google Scholar 

  • Landi L, Cabrini L, Fiorentini D, Sartor G, Pasquali P, Masotti L (1991) The role of the side chain in the antioxidant activity of ubiquinones. Free Radic Res Commun 14:1–8

    Article  PubMed  CAS  Google Scholar 

  • Liberman EA, Topaly VP (1969) Permeability of bimolecular phospholipid membranes for fat-soluble ions. Biofizika 14:452–461

    PubMed  CAS  Google Scholar 

  • Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP (1969) Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 222:1076–1078

    Article  PubMed  CAS  Google Scholar 

  • Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2,2′-azo-bis(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    Article  PubMed  CAS  Google Scholar 

  • Loshadkin D, Roginsky V, Pliss E (2002) Substituted p-hydroquinones as a chain-breaking antioxidant during the oxidation of styrene. Int J Chem Kinetics 34:162–171

    Article  CAS  Google Scholar 

  • Mattson MP (2004) Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann NY Acad Sci 1012:37–50

    Article  PubMed  CAS  Google Scholar 

  • Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  PubMed  CAS  Google Scholar 

  • Naguib YM (1998) A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal Biochem 265:290–298

    Article  PubMed  CAS  Google Scholar 

  • Nyokong T (2007) Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines. Coord Chem Rev 251:1707–1722

    Article  CAS  Google Scholar 

  • Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305–319

    Article  PubMed  CAS  Google Scholar 

  • Pashkovskaya AA, Maizlish VE, Shaposhnikov GP, Kotova EA, Antonenko YN (2008) Role of electrostatics in the binding of charged metallophthalocyanines to neutral and charged phospholipid membranes. Biochim Biophys Acta 1778:541–548

    Article  PubMed  CAS  Google Scholar 

  • Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16:359–364

    Article  PubMed  CAS  Google Scholar 

  • Roginsky V (2003) Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles. Arch Biochem Biophys 414:261–270

    Article  PubMed  CAS  Google Scholar 

  • Roginsky V, Barsukova T, Loshadkin D, Pliss E (2003) Substituted p-hydroquinones as inhibitors of lipid peroxidation. Chem Phys Lipids 125:49–58

    Article  PubMed  CAS  Google Scholar 

  • Rokitskaya TI, Antonenko YN, Kotova EA (1993) The interaction of phthalocyanine with planar lipid bilayers—photodynamic inactivation of gramicidin channels. FEBS Lett 329:332–335

    Article  PubMed  CAS  Google Scholar 

  • Rokitskaya TI, Antonenko YN, Kotova EA (1996) Photodynamic inactivation of gramicidin channels: a flash-photolysis study. Biochim Biophys Acta 1275:221–226

    Article  PubMed  Google Scholar 

  • Rokitskaya TI, Block M, Antonenko YN, Kotova EA, Pohl P (2000) Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels. Biophys J 78:2572–2580

    Article  PubMed  CAS  Google Scholar 

  • Shapovalov VL, Rokitskaya TI, Kotova EA, Krokhin OV, Antonenko YN (2001) Effect of fluoride anions on gramicidin photoinactivation sensitized by sulfonated aluminum phthalocyanines. Photochem Photobiol 74:1–7

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Noguchi N, Niki E (1999) Dynamics of antioxidant action of ubiquinol: a reappraisal. Biofactors 9:141–148

    PubMed  CAS  Google Scholar 

  • Skulachev VP (2007a) A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc) 72:1385–1396

    Article  CAS  Google Scholar 

  • Skulachev VP (2007b) Method of acting upon organism by targeted delivery of biologically active substances into mitochondria, pharmaceutical composition for carrying out said method, and compound used for the purpose. US Patent PCT/RU2006/000394[WO/2007/046729], 26 April 2007

  • Sobko AA, Vigasina MA, Rokitskaya TI, Kotova EA, Zakharov SD, Cramer WA, Antonenko YN (2004) Chemical and photochemical modification of colicin E1 and gramicidin A in bilayer lipid membranes. J Membr Biol 199:51–62

    Article  PubMed  CAS  Google Scholar 

  • Stark G (1991) The effect of ionizing radiation on lipid membranes. Biochim Biophys Acta 1071:103–122

    PubMed  CAS  Google Scholar 

  • Stark G (2005) Functional consequences of oxidative membrane damage. J Membr Biol 205:1–16

    Article  PubMed  CAS  Google Scholar 

  • Strassle M, Stark G (1992) Photodynamic inactivation of an ion channel: gramicidin A. Photochem Photobiol 55:461–463

    Article  PubMed  CAS  Google Scholar 

  • Xia S, Xu S, Zhang X, Zhong F (2007) Effect of coenzyme Q10 incorporation on the characteristics of nanoliposomes. J Phys Chem B 111:2200–2207

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann D, Kiesel M, Terpitz U, Zhou A, Reuss R, Kraus J, Schenk WA, Bamberg E, Sukhorukov VL (2008) A combined patch-clamp and electrorotation study of the voltage- and frequency-dependent membrane capacitance caused by structurally dissimilar lipophilic anions. J Membr Biol 221:107–121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. V. Z. Lankin for helpful discussions. This work was supported by Russian Foundation for Basic Research grants 06-04-48523 (to Y. N. A.) and SKOLI NSH-5952.2006.4 (to V. P. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. N. Antonenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonenko, Y.N., Roginsky, V.A., Pashkovskaya, A.A. et al. Protective Effects of Mitochondria-Targeted Antioxidant SkQ in Aqueous and Lipid Membrane Environments. J Membrane Biol 222, 141–149 (2008). https://doi.org/10.1007/s00232-008-9108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-008-9108-6

Keywords

Navigation