Skip to main content

Measuring Mitochondrial Reactive Oxygen Species (ROS) Production

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

We review the major classical approaches to measuring the rates of ROS emission in suspensions of isolated mitochondria and the most essential features of mitochondrial ROS metabolism. The purpose of this review is to assist in designing workable and scientifically sound assays of mitochondrial ROS generation and to help in understanding the accumulated experimental data on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27(12):639–645

    Article  CAS  PubMed  Google Scholar 

  • Afanas’ev IB (2007) Signaling functions of free radicals superoxide and nitric oxide under physiological and pathological conditions. Mol Biotechnol 37(1):2–4

    Article  PubMed  Google Scholar 

  • Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70(2):200–214

    Article  CAS  Google Scholar 

  • Avi-Dor Y, Cutolo E, Paul KG (1954) The assay of hydrogen peroxide in small quantities with horse radish peroxidase as catalyst. Acta Physiol Scand 32(4):314–319

    Article  CAS  PubMed  Google Scholar 

  • Azzi A, Montecucco C, Richter C (1975) The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biological membranes. Biochem Biophys Res Commun 65(2):597–603

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Cadenas E (1997) Cellular sources and steady-state levels of reactive oxygen species. In: Clerch LB, Massaro DJ (eds) Oxygen gene expression and cellular function. Marcel Dekker, New York, pp 1–25

    Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boveris A, Martino E, Stoppani AO (1977) Evaluation of the horseradish peroxidase-scopoletin method for the measurement of hydrogen peroxide formation in biological systems. Anal Biochem 80(1):145–158

    Article  CAS  PubMed  Google Scholar 

  • Burkitt MJ, Wardman P (2001) Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem Biophys Res Commun 282(1):329–333

    Article  CAS  PubMed  Google Scholar 

  • Burkitt M, Jones C, Lawrence A, Wardman P (2004) Activation of cytochrome c to a peroxidase compound I-type intermediate by H2O2: relevance to redox signalling in apoptosis. Biochem Soc Symp 71:97–106

    CAS  PubMed  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605

    CAS  PubMed  Google Scholar 

  • Cino M, Del Maestro RF (1989) Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch Biochem Biophys 269(2):623–638

    Article  CAS  PubMed  Google Scholar 

  • Corbett JT (1989) The scopoletin assay for hydrogen peroxide. A review and a better method. J Biochem Biophys Methods 18(4):297–307

    Article  CAS  PubMed  Google Scholar 

  • Desagher S, Glowinski J, Premont J (1997) Pyruvate protects neurons against hydrogen peroxide-induced toxicity. J Neurosci 17(23):9060–9067

    CAS  PubMed  Google Scholar 

  • Dickinson BC, Srikun D, Chang CJ (2010) Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol 14(1):50–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    CAS  PubMed  Google Scholar 

  • Genova ML, Abd-Elsalam NM, Mahdyel SM, Bernacchia A, Lucarini M, Pedulli GF, Lenaz G (2006) Redox cycling of adrenaline and adrenochrome catalysed by mitochondrial complex I. Arch Biochem Biophys 447(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8(9):722–728

    Article  CAS  PubMed  Google Scholar 

  • Hansford RG, Hogue BA, Mildaziene V (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr 29(1):89–95

    Article  CAS  PubMed  Google Scholar 

  • Hoffman DL, Brookes PS (2009) Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J Biol Chem 284(24):16236–16245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman DL, Salter JD, Brookes PS (2007) Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 292(1):H101–H108

    Article  CAS  PubMed  Google Scholar 

  • Holleman MAF (1904) Notice sur l’action de l’eau oxygenee sur les acides a-cetoniques et sur les dicetones 1.2. Recl Trav Chim Pays-Bas Belg 23:169–172

    Article  CAS  Google Scholar 

  • Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250(5 Pt 1):C663–C675

    CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  CAS  PubMed  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P) + oxidation-reduction state. Biochem J 368(Pt 2):545–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    Article  CAS  PubMed  Google Scholar 

  • Loschen G, Flohe L, Chance B (1971) Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett 18(2):261–264

    Article  CAS  PubMed  Google Scholar 

  • Meyer AJ, Dick TP (2010) Fluorescent protein-based redox probes. Antioxid Redox Signal 13(5):621–650

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  PubMed  Google Scholar 

  • Murphy AN, Fiskum G, Beal MF (1999) Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab 19(3):231–245

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nystrom T, Belousov V, Schumacker PT, Winterbourn CC (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13(4):361–366

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S (2002) Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett 511(1–3):21–27

    Article  CAS  PubMed  Google Scholar 

  • Pasdois P, Parker JE, Griffiths EJ, Halestrap AP The role of oxidized cytochrome C in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. Biochem J 436(2): 493–505

    Google Scholar 

  • Patole MS, Swaroop A, Ramasarma T (1986) Generation of H2O2 in brain mitochondria. J Neurochem 47(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Popov VN, Simonian RA, Skulachev VP, Starkov AA (1997) Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett 415(1):87–90

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Chang TS, Jeong W, Kang D (2010) Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol Cells 29(6):539–549

    Article  CAS  PubMed  Google Scholar 

  • Rosen GM, Tsai P, Weaver J, Porasuphatana S, Roman LJ, Starkov AA, Fiskum G, Pou S (2002) The role of tetrahydrobiopterin in the regulation of neuronal nitric-oxide synthase-generated superoxide. J Biol Chem 277(43):40275–40280

    Article  CAS  PubMed  Google Scholar 

  • Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′'-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 27(7–8):873–881

    Article  CAS  PubMed  Google Scholar 

  • Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302(2):348–355

    Article  CAS  PubMed  Google Scholar 

  • Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14:393–400

    Article  CAS  Google Scholar 

  • Skulachev VP (1995) Nonphosphorylating respiration as the mechanism preventing the formation of active forms of oxygen. Mol Biol (Mosk) 29(6):1199–1209

    CAS  Google Scholar 

  • Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29(2):169–202

    Article  CAS  PubMed  Google Scholar 

  • Sorgato MC, Sartorelli L, Loschen G, Azzi A (1974) Oxygen radicals and hydrogen peroxide in rat brain mitochondria. FEBS Lett 45(1):92–95

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA (2006) Protein-mediated energy-dissipating pathways in mitochondria. Chem Biol Interact 163(1–2):133–144

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Starkov AA (2010) Measurement of mitochondrial ROS production. Methods Mol Biol 648:245–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Starkov A, Fiskum G (2002) Generation of reactive oxygen species by brain mitochondria mediated by -ketoglutarate dehydrogenase. Society for Neuroscience, Washington, DC, Abstract Viewer/Itinerary Planner Online Program No 194.17

    Google Scholar 

  • Starkov AA, Fiskum G (2003) Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86(5):1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA, Polster BM, Fiskum G (2002) Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem 83(1):220–228

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA, Chinopoulos C, Fiskum G (2004) Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36(3–4):257–264

    Article  CAS  PubMed  Google Scholar 

  • Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8(3–4):243–270

    Article  CAS  PubMed  Google Scholar 

  • Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24(36):7771–7778

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (1997) Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(Pt 2):335–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  • Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79(2):266–277

    Article  CAS  PubMed  Google Scholar 

  • Wardman P (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 43(7):995–1022

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Ranguelova K, Jiang J, Mason RP (2011) Studies on the photosensitized reduction of resorufin and implications for the detection of oxidative stress with amplex red. Free Radic Biol Med 51(1):153–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253(2):162–168

    Article  CAS  PubMed  Google Scholar 

  • Zielonka J, Kalyanaraman B (2010) Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. Free Radic Biol Med 48(8):983–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly A. Starkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Starkov, A.A. (2014). Measuring Mitochondrial Reactive Oxygen Species (ROS) Production. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_8

Download citation

Publish with us

Policies and ethics