Skip to main content

Pathophysiological Roles of Reactive Oxygen and Nitrogen Species

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are highly reactive molecules that are implicated in both normal and abnormal cellular processes. ROS and RNS are produced during normal cellular metabolism via diverse enzymatic pathways, but excessive production can occur in response to such stressors as toxicant exposure, radiation damage, and disease, resulting in local oxidative stress. These high levels of ROS/RNS induce a complex series of downstream adaptive and reparative events often associated with inflammation and fluid accumulation. Examples of ROS include peroxides and free oxygen ions generated during the normal metabolism of oxygen. Similarly, RNS such as nitric oxide (NO), peroxynitrite, and nitrogen dioxide are generated via the activity of enzymes such as inducible nitric oxide synthase 2 (NOS2) and NADPH oxidase (NOX).

One of the main sources of ROS is the mitochondria where ROS superoxides are produced as a by-product of normal oxidative phophorylation; excess superoxide leaking into the cytoplasm can be converted into further ROS, whereas reactivity with NO generates peroxynitrite and further downstream nitrogen species. Here we review the main intracellular pathways and extracellular pathways involved in ROS and RNS signaling and the consequential damage to DNA, proteins, and lipids. Key mechanisms such as antioxidant defense and redox sensors are considered along with the key regulating kinases and transcription factors such as PI3K and NFkB. The roles of ROS and RNS in aging and associated diseases such as COPD, asthma, and neurodegeneration are discussed in detail along with an analysis of probable mechanisms. Finally, we consider future challenges such as how do ROS and RNS interact at multiple places within signaling networks and how do we understand and predict likely outcome? Also, how do ROS/RNS activate key molecules such as JNK and p38 MAPK and cell cycle genes? More detailed knowledge of these interactions may provide opportunities for future lifestyle advice and therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam L, Bouvier M, Jones TL (1999) Nitric oxide modulates beta(2)-adrenergic receptor palmitoylation and signaling. J Biol Chem 274:26337–26343

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Ohmori M, Takimoto M, Ota H, Yoshida T (1997) Cocaine-induced liver injury in mice is mediated by nitric oxide and reactive oxygen species. Eur J Pharmacol 336:43–49

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Kimelberg HK (1991) The use of astrocytes in culture as a model system for evaluating neurotoxic-induced injury. Neurotox 12:505–518

    CAS  Google Scholar 

  • Aslan M, Cort A, Yucel I (2008) Oxidative and nitrative stress markers in glaucoma. Free Radic Biol Med 45:367–376

    Article  CAS  PubMed  Google Scholar 

  • Badham HJ, Renaud SJ, Wan J, Winn LM (2010) Benzene-initiated oxidative stress: effects on embrtonic signaling pathways. Chem Biol Interact 184:218–221

    Article  CAS  PubMed  Google Scholar 

  • Baldeiras I, Santana I, Proenca MT, Garrucho MH, Pascoal R, Rodrigues A, Duro D, Oliveira CR (2010) Oxidative damage and progression to Alzheimer’s disease in patients with mild cognitive impairment. J Alzheimers Dis 21(4):1165–1177

    CAS  PubMed  Google Scholar 

  • Barcia C, Ros CM, Annese V, Gomez A, Ros-Bernal F, Aguado-Year D, Martınez-Pagan ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death and Dis 2(4):e142. doi:10.1038/cddis.2011.17

    Article  CAS  Google Scholar 

  • Barry-Lane PA, Patterson C, van der Merwe M, Hu Z, Holland SM, Yeh ET, Runge MS (2001) p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 108(10):1513–1522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(3):589–606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bleeke T, Zhang H, Madamanchi N, Patterson C, Faber JE (2004) Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res 94(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Froklis M et al (1998) Extension of lifespan by introduction of telomerase into normal human cells. Science 279(5349):349–352

    Article  CAS  PubMed  Google Scholar 

  • Boelsterli UA (2003) Xenobiotic-induced oxidative stress: cell injury, signaling, and gene regulation” in mechanistic toxicology. Taylor and Francis, Washington, DC, pp 93–135

    Google Scholar 

  • Bonda DJ et al (2010) Oxidative stress in Alzheimer’s disease: A possibility for prevention? Neuropharmacology 59:290–294

    Article  CAS  PubMed  Google Scholar 

  • Bowler RP, Barnes PJ, Crapo JD (2004) The role of oxidative stress in chronic obstructive pulmonary disease. COPD 1(2):255–277

    Article  PubMed  Google Scholar 

  • Bruce-Keller AJ, Gupta S, Parrino TE, Knight AG, Ebenezer PJ, Weidner AM, LeVine H III, Keller JN, Markesbery WR (2010) NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal 12:1371–1382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and anti-oxidants: lipid-peroxidation, α-tocopherol and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  PubMed  Google Scholar 

  • Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell RR III (2011) Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 67(1381):1388

    Google Scholar 

  • Bulavin DV et al (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J, 18(23):6845–6854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burke AS, MacMillan-Crow LA, Hinson JA (2010) Reactive nitrogen species in acetaminophen-induced mitochondrial damage and toxicity in mouse hepatocytes. Chem Res Toxicol 23:1286–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burns TF, El-Deiry WS (November 1999) The p53 pathway and apoptosis. J Cellular Physiol 181:231–239

    Article  CAS  Google Scholar 

  • Buschmann T et al (April 27, 2001) Stabilization and activation of p53 by the coactivator protein TAFII31. J Biol Chem 276(17):13852–13857

    CAS  PubMed  Google Scholar 

  • Cadenas E (1997) Basic mechanisms of antioxidant activity. Biofactors 6(4):391–397

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular disease: the role of oxidant stress. Circ Res 87:840–844

    Article  CAS  PubMed  Google Scholar 

  • Campbell A, Smith MA, Sayre LM, Bondy SC, Perry G (2001) Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull 55(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Carter ME, Brunet A (2007) FOXO transcription factors. Curr Biol 7(4):R113–R114

    Article  CAS  Google Scholar 

  • Castello PR, Drechsel DA, Patel M (2007) Mitochondria are a major source of paraquat induced reactive oxygen species production in the brain. J Biol Chem 282(19):14186–14193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen N, Reith MEA (2000) Structure and function of the dopamine transporter. Eur J Pharmacol 405:329–339

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Niki E (2011) Two faces of lipid peroxidation products: the ‘Yin and Yang’ principles of oxidative stress. J Exp Integr Med 1(4):215–219

    Google Scholar 

  • Cleeter MW, Cooper JM, Schapira AH (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence of free radical involvement. J Neurochem 58:786–789

    Article  CAS  PubMed  Google Scholar 

  • Cohen SM (1983) Promotion in urinary bladder carcinogenesis. Environ Health Perspect 50:51–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cortijo J, Marti-Cabrera M, de la Asuncion JG, Pallardo FV, Esteras A, Bruseghini L (1999) Contraction of human airways by oxidative stress protection by N acetylcysteine. Free Radic Biol Med 27:392–400

    Article  CAS  PubMed  Google Scholar 

  • Criddle DN, Gillies S, Baumgartner-Wilson HK, Jaffar M, Chinje EC, Passmore S, Chvanov M, Barrow S, Gerasimenko OV, Tepikin AV, Sutton R, Petersen OH (2006) Menadione induced reactive oxygen species generation via redox cycling promotes apoptosis of murine pancreatic acinar cells. J Biol Chem 281(52):40485–40492

    Article  CAS  PubMed  Google Scholar 

  • CTdotgovdimebon ClinicalTrials.gov study NCT00675623, a safety and efficacy study of oral dimebon in patients with mild-to-moderate Alzheimer’s disease

    Google Scholar 

  • Cui H, Kong Y, Zhang H (2011) Oxidative stress mitochondrial dysfunction and aging. J Signal Transduct 2012;2012:646354 Epub 2011 Oct 2

    Google Scholar 

  • Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112(4):935–945

    Article  CAS  PubMed  Google Scholar 

  • Dalton T, Palmiter RD, Andrews GK (1994) Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide treated HeLa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements. Nuclei Acids Res 22:5016–5023

    Article  CAS  Google Scholar 

  • Devasagayam TPA, Tilak JC, Boloor KK, Sane Ketaki S, Ghaskadbi Saroj S, Lele RD (2004) Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 52:796

    Google Scholar 

  • Di Noia MA, Van Dreische S, Palmieri F, Yang LM, Quan S, Goodman AI, Abraham NG (2006) Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome c oxidase activity in experimental diabetes disease. Toxicology 23:65–87

    Google Scholar 

  • Dworski R (2000) Oxidant stress in asthma. Thorax 55(suppl 2):S51–S53

    Article  PubMed Central  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Dumont M, Beal MF (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 51:1014–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eggers AE (2009) Why do Alzheimer’s disease and Parkinson’s disease target the same neurons? Med Hypotheses 72:698–700

    Article  PubMed  Google Scholar 

  • El-Benna J, Dang PM, Périanin A (2010) Peptide-based inhibitors of the phagocyte NADPH oxidase. Biochem Pharmacol 80(6):778–785

    Article  CAS  PubMed  Google Scholar 

  • Elchuri S, Oberley TD, Qi W (2005) CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene 24(3):367–380

    Article  CAS  PubMed  Google Scholar 

  • Emre Y, Hurtaud C, Karace M, Nubel T, Zaval F, Ricquier D (2007) Role of uncoupling protein UCP2 in cell mediated immunity: how macrophage mediated insulitis is accelerated in a model of autoimmune diabetes. Proc Natl Acad Sci USA 104:19085–19090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foreman RC, Mercer PF, Kroegel C, Warner JA (1999) Role of the eosinophil in protein oxidation in asthma: possible effects on proteinase/antiproteinase balance. Int Arch Allergy Immunol 118:183–186

    Article  CAS  PubMed  Google Scholar 

  • Freiderich M, Fasching A, Hansell P, Nordqvist L, Palm F (2008) Diabetes-induced up regulation of uncoupling protein 2results in increased mitochondrial uncoupling in kidney proximal tubular cells. Biochim Biophys acta 1777:935–940

    Article  CAS  Google Scholar 

  • Galanis A, Karapetsas A, Sandaltzopoulos R (2009) Metal induced carcinogenesis, oxidative stress and hypoxia signaling. Mutat Res 674:31–35

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003) Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 102:783–788

    Article  CAS  PubMed  Google Scholar 

  • Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83(5):1774–1777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goskel S, Nurhayat T, Ozer sehirli A, Ercan F, Gedik N (2007) Resveratrol alleviates bleomycin-induced lung injury in rats. Pulm Pharmacol Ther 20(642):649

    Google Scholar 

  • Granger DN, Rutili G, McCord J (1981) Superoxide radicals in feline intestinal ischemia. Gastroenterology 81:22–29

    CAS  PubMed  Google Scholar 

  • Griendling KK (2004) Novel NAD(P)H oxidases in the cardiovascular system. Heart 90(5):491–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grootveld M, Bell JD, Halliwell B, Aruoma OI, Bomford A, Sadler PJ (1989) Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. Characterization by high performance liquid chromatography and nuclear magnetic resonance spectroscopy. J Biol Chem 264(8):4417–4422

    CAS  PubMed  Google Scholar 

  • Guzik TJ, West NE, Pillai R, Taggart DP, Channon KM (2002) Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension 39(6):1088–1094

    Article  CAS  PubMed  Google Scholar 

  • Gut I, Nedelcheva V, Soucek P, Stropka P, Vodicka P, Gelboin HP, Ingelmansundberg M (1996) The role of CYP2E1 in and 2B1 in metabolic activation of benzene derivatives. Arch Toxicol 71:45–56

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  • Hay J, Shaheidi S, Laurent G (1991) Mechanisms of bleomycin-induced lung damage. Arch Toxicol 65(2):81–94

    Article  CAS  PubMed  Google Scholar 

  • Herraiz T, Guillén H (2011) Inhibition of the bioactivation of the neurotoxin MPTP by antioxidants, redox agents and monoamine oxidase inhibitors. Food Chem Toxicol 49:1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Hess J et al (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(Pt 25):5965–5973

    Article  CAS  PubMed  Google Scholar 

  • Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41(12):2164–2171

    Article  CAS  PubMed  Google Scholar 

  • Hiltermann TJ, Peters EA, Alberts B, Kwikkers K, Borggreven PA, Hiemstra PS et al (1998) Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases. Free Radic Biol Med 24:952–958

    Article  CAS  PubMed  Google Scholar 

  • Hissink AM, Oudshoorn MJ, Van Ommen B, Haenen GRMM, Van Bladeren PJ (1996) Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by Rat and Man: implications for human risk assessment. Chem Res Toxicol 9:1249–1256

    Article  CAS  PubMed  Google Scholar 

  • Hoet PHM, Nemery B (2002) Polyamines and the lung: polyamine uptake and polyamine linked pathological or toxicological conditions. Am J Physiol Lung Cell Mol Physiol 278:L417–L433

    Google Scholar 

  • Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahriami A, Karimi G (2011) Curcumin potentiates doxorubicin-induced apoptosis in H9c” cardiac muscle cells trhough generation of reactive oxygen species. Food Chem Toxicol 49:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Hulsmann AR, Raatgeep HR, den Hollander JC, Stijnen T, Saxena PR, Kerrebijn KF et al (1994) Oxidative epithelial damage produces hyperresponsiveness of human peripheral airways. Am J Respir Crit Care Med 149:519–525

    Article  CAS  PubMed  Google Scholar 

  • Hung YH, Bush AI, Cherny RA (2010) Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 15:61–76

    Article  CAS  PubMed  Google Scholar 

  • Ichinose M, Sugiura H, Yamagata S, Koarai A, Shirato K (2000) Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med 162:701–706

    Article  CAS  PubMed  Google Scholar 

  • Ingenuity® Systems, www.ingenuity.com

  • Janssen-Heininger Y, Ckless K, Reynaert N, van der Vliet A (2005) SOD inactivation in asthma: bad or no news? Am J Pathol 166:649–652

    Article  PubMed Central  PubMed  Google Scholar 

  • Jenner P, Marsden CD (1987) In: De Matteis F, Lock EA (eds) Parkinson syndrome caused by 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) in man and animals, selectivity and molecular mechanisms of toxicity. Macmillan Press, Basingstoke, pp 213–248

    Google Scholar 

  • Jeyaseelan R, Poizat C, Wu HY, Kedes L (1997) Molecular mechanisms of doxorubicin induced cardiomyopathy—selective suppression of reiske iron-sulphur protein, ADP/ATP translocase, and phosphofructokinase genes is associated with ATP depletion in rat cardiomyocytes. J Biol Chem 272:5828–5832

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93:11848–11852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 23:65–87

    Article  CAS  Google Scholar 

  • Kabuyama Y et al (2008) Involvement of thioredoxin reductase 1 in the regulation of redox balance and viability of rheumatoid synovial cells. Biochem Biophys Res Commun (Academic Journal, 2008) 367(2):491–496

    Article  CAS  Google Scholar 

  • Kalayarasan S, Sriram N, Sudhandiran G (2008) Diallyl sulfide attenuates bleomycin induced pulmonary fibrosis: critical role of iNOS, NF-κB, TNF-α and IL-1β. Life Sci 82:1142–1153

    Article  CAS  PubMed  Google Scholar 

  • Kamp D (2009) Asbestos induced lung disease: an update. Transl Res 153(4):143–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kandel ES, Hay N (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253:210–229

    Article  CAS  PubMed  Google Scholar 

  • Kefaloyianni E, Gaitanaki C, Beis I (2006) ERK1/2 And p38-MAPK signaling pathways, through MSK1, are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 18:2238–2251

    Article  CAS  PubMed  Google Scholar 

  • Kemna EH, Tjalsma H, Willems HL, Swinkels DW (2008) Hepcidin: from discovery to differential diagnosis. Haematologica 93:90–97

    Article  CAS  PubMed  Google Scholar 

  • Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM (1996) Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 93:9114–9119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, Takeshita A (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87(5):392–398

    Article  CAS  PubMed  Google Scholar 

  • Kirkham P, Rahman I (2006) Oxidative stress in asthma and COPD: anti-oxidants as a therapeutic strategy. Pharmacol Ther 111:476–494

    Article  CAS  PubMed  Google Scholar 

  • Klapowitz N, Fernandezcheca JC, Kannan R, Garciaruiz C, Ookhtens M, Yi JR (1996) GSH transporters: molecular characterization and role in GSH homeostasis. Biol Chem 377:267–273, Hoppe Seyler

    Google Scholar 

  • Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, Roberts RA, Fenner-Crisp PA (2003) PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol 33:655–780

    Article  CAS  PubMed  Google Scholar 

  • Klaunig JE, Wang Z, Pu X, Zhou S (2011) Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 254:86–99

    Article  CAS  PubMed  Google Scholar 

  • Krause MS, Bittercourt PI Jr (2008) Type 1 diabetes: can exercise impair the auto immune event: the L-arginine/glutamine coupling hypotheisis. Cell Biochem Funct 26(406):433

    Google Scholar 

  • Krijnen PA, Meischl C, Hack CE, Meijer CJ, Visser CA, Roos D, Niessen HW (2003) Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol 56(3):194–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krishna MT, Madden J, Teran LM, Biscione GL, Lau LC, Withers NJ et al (1998) Effects of 0.2 Ppm ozone on biomarkers of inflammation in bronchoalveolar lavage fluid and bronchial mucosa of healthy subjects. Eur Respir J 11:1294–1300

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869

    CAS  PubMed  Google Scholar 

  • Lenzen S, Drinkgern J, Tiedge M (1996) Low anti-oxidant enzymes gene expression in pancreatic islets compared with various other mouse tissues. Free Rad Biol Med 20:463–466

    Article  CAS  PubMed  Google Scholar 

  • Li F, Calingasan NY, Yu F, Mauck WM, Toidze M, Almeida CG, Takahashi RH, Carlson GA, Flint Beal M, Lin MT, Gouras GK (2004) Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J Neurochem 89:1308–1312

    Article  CAS  PubMed  Google Scholar 

  • Lin JL, Thomas PS (2010) Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. COPD: J Chronic Obstructive Pulm Dis 7:291–306

    Article  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  CAS  PubMed  Google Scholar 

  • Looi YH, Grieve DJ, Siva A et al (2005) A Nox2-containing NADPH oxidase contributes to cardiac remodeling after myocardial infarction [abstract]. Circulation 112(Suppl):11–18

    Google Scholar 

  • Ma N, Sasoh M, Kawanishi S, Sugiura H, Piao F (2010) Protection effect of taurine on nitrosative stress in the mice brain with chronic exposure to arsenic. J Biomed Sci 17(1):S7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma Q (2010) Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther 125:376–393

    Article  CAS  PubMed  Google Scholar 

  • Markland N, Clausen F, Lewen A, Hovda DA, Olsson Y, Hillered L (2001) α-Phenyl—tert-N-butyl nitrone (PBN) improves functional and morphological outcome after cortical contusion injury in the rat. Acta Neurochir (Wien) 143:73–81

    Article  Google Scholar 

  • Mateos F, Brock JH, Perez-Arellano JL (1998) Iron metabolism in the lower respiratory tract. Thorax 53:594–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maynard S, Schurmann SH, Harboe C, De Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and ageing. Carcinogenesis 30(1):2–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    Article  CAS  PubMed  Google Scholar 

  • Mercado N, Thimmulappa R, Thomas CMR, Fenwick PS, Chana KK, Donnelly LE, Biswal S, Ito K, Barnes PJ (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406:292–298, 2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller GW, Gainetdinov RR, Levey AI, Caron MG (1999) Dopamine transporters and neuronal cell injury. Trends Pharmacol Sci 20:424–429

    Article  CAS  PubMed  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell ageing. Exp gerontology 15(6):575–591

    Article  CAS  Google Scholar 

  • Mitra SN, Slungaard A, Hazen SL (2000) Role of eosinophil peroxidase in the origins of protein oxidation in asthma. Redox Rep 5:215–224

    Article  CAS  PubMed  Google Scholar 

  • Mitsopoulos P, Suntres ZE (2010) Cytotoxicity and gene array analysis of alveolar epithelial A549 cells exposed to paraquat. Chem-Biol Interact 188:427–436

    Article  CAS  PubMed  Google Scholar 

  • Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA et al (2000) Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 162:1175–1177

    Article  CAS  PubMed  Google Scholar 

  • Morbt N, Tomm J,Feltens R, Mogel L, Kalkhof S, Murugesan K, Wirth H, Vogt C, Binder H Lehmann I, von Bergen M (2011) Chlorinated benzenes cause concomitantly oxidative stress and induction of apoptotic markers in lung epithelial cells (A549) at nonacute toxic concentrations. Am J Neuroradiol 2011 Sep 1 [Epub ahead of print]

    Google Scholar 

  • Moyer VD et al (1994) Oxygen radicals and asbestos carcinogenesis. Environ Health Perspect 102(suppl 10):131–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mysore TB, Shinkel TA, Collins J, Salvaris EJ, Fisicaro N, Murray-Segal LJ, Johnson LE, Lepore DA, Walters SN, Stokes R, Chandra AP, O’Connell PJ, d’Apice AJ, Cowan PJ PJ (2005) Overexpression of glutathione peroxidase with twoisoforms of superoxide dismutase protects mouse islets from oxidative injury and improves islet graft function. Diabetes 54:2109–2116

    Article  CAS  PubMed  Google Scholar 

  • Nadeem A, Raj HG, Chhabra SK (2005) Increased oxidative stress in acute exacerbations of asthma. J Asthma 42:45–50

    Article  CAS  PubMed  Google Scholar 

  • Nakamura R, Egashira K, Machida Y, Hayashidani S, Takeya M, Utsumi H, Tsutsui H, Takeshita A (2002) Probucol attenuates left ventricular dysfunction and remodeling in tachycardia induced heart failure: roles of oxidative stress and inflammation. Circulation 106(3):362–367

    Article  CAS  PubMed  Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  CAS  PubMed  Google Scholar 

  • Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1:5

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Okun I, Tkachenko SE, Khvat A, Mitkin O, Kazey V, Ivachtchenko AV (2010) From anti-allergic to anti-Alzheimer’s: molecular pharmacology of dimebon. Curr Alzheimer Res 7:97–112

    Article  CAS  PubMed  Google Scholar 

  • Owen S, Pearson D, Suarez-Mendez V, O’Driscoll R, Woodcock A (1991) Evidence of free-radical activity in asthma. N Engl J Med 325:586–587

    Article  CAS  PubMed  Google Scholar 

  • Papi A, Luppi F, Franco F, Fabbri LM (2006) Pathophysiology of exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc Vol 3:245–251

    Article  Google Scholar 

  • Park Y, Yang J, Zhang H, Chen X, Zhang C (2011) Effect of PAR2 in regulating TNF-alpha and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice. Basic Res Cardiol 106(1):111–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pastor N, Weinstein H, Jamison E, Brenowitz M (2000) A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol 304:55–68

    Article  CAS  PubMed  Google Scholar 

  • Paterson JF, Hammond MD, Montgomery MR, Sharp JT, Farrier SE, Balis JU (1992) Acute ozone-induced lung injury in rats: structural-functional relationships of developing alveolar edema. Toxicol Appl Pharmacol 117:37–45

    Article  CAS  PubMed  Google Scholar 

  • Pavlov PF, Petersen CH, Glaser E, Ankarcrona M (2009) Mitochondrial accumulation of APP and Abeta: significance for Alzheimer disease pathogenesis. J Cell Mol Med 13:4137–4145

    Article  CAS  PubMed  Google Scholar 

  • Peebles B, Nagy A, Waldman WJ, Dutta P (2010) Fenton activity and cytotoxicity studies of iron-loaded carbon particles. Environ Sci Technol 44:6887–6892

    Article  CAS  PubMed  Google Scholar 

  • Perrelli MG, Pagliaro P, Penna C (2011) Ischemia/reperfusion injury and cardioprotective mechanisms: role of mitochondria and reactive oxygen species. Worl J Cardiol 3(6):186–200, 26

    Article  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  PubMed  Google Scholar 

  • Pignatelli B, Li CQ, Boffetta P, Chen Q, Ahrens W, Nyberg F (2001) Nitrated and oxidized plasma proteins in smokers and lung cancer patients. Cancer Res 61:778–784

    CAS  PubMed  Google Scholar 

  • Pratico D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21:4183–4187

    CAS  PubMed  Google Scholar 

  • Rahman I, MacNee W (1996) Role of oxidants/antioxidants in smoking induced lung diseases. Free Radic Biol Med 21:669–681

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 97(8):1916–1923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raz E, Jensen JH, Ge Y, Babb JS, Miles L, Reaume J, Grossman RI, Inglese M (2011) Brain iron quantification in mild traumatic brain injury: a magnetic field correlation study. AJNR Am J Neuroradiol 32(10):1851–1856. doi:10.3174/ajnr.A2637

    Article  CAS  PubMed  Google Scholar 

  • Reed CJ (1990) Glutathione: toxicological implications. Annu Rev Pharmacol Toxicol 30:603–631

    Article  CAS  PubMed  Google Scholar 

  • Reeve AK, Krishnan KJ, Turnbull D (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann NY Acad Sci 1147:21–29

    Article  CAS  PubMed  Google Scholar 

  • Resende R, Moreira PI, Proenca T, Deshpande A, Busciglio J, Pereira C, Oliveira CR (2008) Brain oxidative stress in a triple-transgenic mouse model of Alzheimer disease Free

    Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richter C (1997) In: Wallace KB (ed) Free radical mediated DNA oxidation, free radical toxicology. Taylor and Francis, Washington, DC, pp 89–113

    Google Scholar 

  • Roberts R, Kimber I (1999) Cytokines and nongenotoxic hepatocarcinogenesis. Carcinogenesis 20:1397–1401

    Article  CAS  PubMed  Google Scholar 

  • Roberts RA, Laskin D, Smith C, Robertson F, Allen EMG, Doorn J, Slikker W (2009) Oxidative and nitrative stress in toxicology and disease. Toxicol Sci 112(1):4–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson F (2010) Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 276:85–94

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Bryder D, Sieta J, Nussensweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of hemopoeitic cells with age. Nature 447(7145):725–729

    Article  CAS  PubMed  Google Scholar 

  • Scheulen ME, Kappus H (1992) Anthracyclines as model compounds for cardiac toxicity, tissue-specific toxicity. Biochem Mech Chem 272:5828–5832

    Google Scholar 

  • Schrauwen P (2007) High fat diet, muscular lipotoxicity and insulin resistance. Proc Nutr Soc 66:33–41

    Article  CAS  PubMed  Google Scholar 

  • Serrano J, Palmeira CM, Kuehl DW, Wallace KB (1999) Cardioselective and cumulative oxidation of mito-chondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta 1441:201–205

    Article  Google Scholar 

  • Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113(2):160–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shin GC, Kim C, Lee JM, Cho WS, Lee SG, Jeong M, Cho J, Lee K (2009) Apigenin induced apoptosis is mediated by reactive oxygen species and activation of ERK1/2 in rheumatoid fibroblast-like synoviocytes. Chem-Biol interact 182:29–36

    Article  CAS  PubMed  Google Scholar 

  • Shiomi T, Tsutsui H, Matsusaka H, Murakami K, Hayashidani S, Ikeuchi M, Wen J, Kubota T, Utsumi H, Takeshita A (2004) Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109(4):544–549

    Article  CAS  PubMed  Google Scholar 

  • Singal PK, Illiskovic N, Li TM, Kumar D (1997) Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 11:931–936

    CAS  PubMed  Google Scholar 

  • Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18(45):6145–6157

    Article  CAS  PubMed  Google Scholar 

  • Sirker A, Zhang M, Shah AM (2011) NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res Cardiol 106:735–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivitz WI, Yorek MA (2010) Mitochondrial function in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12(4):537–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith LL (1981) Young scientist award lecture: the identification of an accumulation system for diamines and polyaimines in the lung and its relevance to paraquat. Arch Toxicol Suppl 1982(5):1–4

    Google Scholar 

  • Smith LL, Lewis CP, Wyatt I, Cohen GM (1990) The importance of epithelial uptake systems in lung toxicity. Environ Health Perpsect 85:25–30

    Article  CAS  Google Scholar 

  • Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, Nakamura M, Nunomura A, Perry G (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19:363–372

    PubMed Central  PubMed  Google Scholar 

  • Snyder R, Witz G, Goldstein BD (1993) The toxicity of benzene. Environ Health Perspect 100:293–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signaling 11:2481–2504

    Article  CAS  Google Scholar 

  • Storch A, Schwartz J (2000) In: Stroch A, Collins MA (eds) The dopamine transporter: involvememnt in selective dopaminergic neurodegeneration, neurotoxic factorsin parkinson’s disease and related dosorders. Kluwer Acedemic Press, New York, pp 17–40

    Chapter  Google Scholar 

  • Subrahmanyam V, Smith MT (1997) In: Wallace KB (ed) Free radical-mediated hematopoetic toxicity by drugs, environmental pollutants, and ionizing radiation. Free RadicalToxicology. Taylor and Francis, Washington, DC, pp 249–278

    Google Scholar 

  • Sumimoto H, Miyano K, Takeya R (2005) Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338:677–686

    Article  CAS  PubMed  Google Scholar 

  • Swei A, Lacy F, DeLano FA, Parks DA, Schmid-Schonbein G (1999) A mechanism of oxygen free radical production in the Dahl hypertensive rat. Microcirc 6:179–187

    Article  CAS  Google Scholar 

  • Szabo C (2000) Pathophysiological roles of nitric oxide in inflammation Chapter 52. http://www.inotekcorp.com/publications/pdf/ipcpub162.pdf

  • Tan AC, Konczak I, Sze DM, Ramzan I (2011) Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutr Cancer 63(4):495–505

    Article  CAS  PubMed  Google Scholar 

  • Tauskela JS (2007) MitoQ—a mitochondria-targeted antioxidant. IDrugs 10:399–412

    CAS  PubMed  Google Scholar 

  • Thomas JA, Poland B, Honzatko R (1995) Protein sulphydryls and their role in the anti oxidant function of protein S-thiolation. Arch. Biochem Biophys 319:1–9

    Article  CAS  Google Scholar 

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  CAS  PubMed  Google Scholar 

  • Valko M et al (2007) Free radicals and anti-oxidants in normal physiological functions and human disease. IJBCB 39:44–84

    CAS  Google Scholar 

  • Van der Vliet A, Smith D, O’Neill CA, Kaur H, Darley-Usmar V, Cross CE et al (1994) Interactions of peroxynitrite with human plasma and its constituents: oxidative damage and antioxidant depletion. Biochem J 303:295–301

    PubMed Central  PubMed  Google Scholar 

  • van Muiswinkel FL, Kuiperij HB (2005) The Nrf2–ARE signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders. Curr Drug Targets CNS Neurol Disord 4:267–281

    Article  PubMed  Google Scholar 

  • Varani J, Ward PA (1997) Activation of the inflammatory response by asbestos and silicate mineral dusts. In: Wallace KB (ed) Free radical toxicology. Taylor and Francis, Washington, DC, pp 295–322

    Google Scholar 

  • Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opinion Chem Biol 4:177–183

    Article  CAS  Google Scholar 

  • Wang YJ, Lee CC, Chang WC, Liou HB, Ho YS (2001) Oxidative stress and liver toxicity in rats and human hepatoma cell line induced by pentachlorophenol and it’s major metabolite tetrachlorohydroquinone. Toxicol Lett 122:157–169

    Article  CAS  PubMed  Google Scholar 

  • Weinstein IB et al (1984) Multistage carcinogenesis involves multiple genes and multiple mechanisms. J Cell Physiol Suppl 3:127–137, Review

    Article  CAS  PubMed  Google Scholar 

  • Wesselius LJ, Nelson ME, Skikne BS (1994) Increased release of ferritin and iron by iron-loaded alveolar macrophages in cigarette smokers. Am J Respir Crit Care Med 150:690–695

    Article  CAS  PubMed  Google Scholar 

  • Wheeler MD, Kono H, Yin M, Rusyn I, Froh M, Connor HD, Mason RP, Samulski RJ, Thurman RG (2001) Delivery of the Cu/Zn-superoxide dismutase gene with adenovirus reduced early alcolol-induced liver injury in rats. Gastroenterology 120:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Doreswamy V, Diaz-Sanchez D, Samet JM, Kesic M, Dailey L, Zhang W, Jaspers J, Peden DB (2011a) GSTM1 Modulation of IL-8 expression in human bronchial epithelial cells exposed to ozone. Free Radic Biol Med 51:522–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu Y, Antony S, Juhasz A, Lu J, Ge Y, Jiang G, Roy K (2011b) Up-regulation and sustained activation of Stat1 are essential for IFN-γ induced dual oxidase 2 and dual oxidase A2 expression in human pancreatic cancer cell lines. J Biol Chem 286(14):12245–12256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xanthoudakis S, Curran T (1992) EMBO J 11:653–665, pmid:1537340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin X, Wu H, Chen Y, Kang YJ (1998) Induction of antioxidants by adriamycin in mouse heart. Biochem Pharmacol 56(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Yi-Wei Z, Shi J, Li Y-J, Wei L (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp 57:435–445

    Article  CAS  Google Scholar 

  • Yokoyama H, Takagi S, Watanabe Y, Kato H, Araki T (2008) Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice. J Neural Transm 115:831–842

    Article  CAS  PubMed  Google Scholar 

  • Younis HS, Hoglen NC, Kuester RK, Gunawardhana L, Sipes IG (2000) 1,2 Dichlorobenzene-mediated hepatocellular oxidative stress in fischer-344 and Sprague Dawley rats. Toxicol Appl Pharmacol 163:141–148

    Article  CAS  PubMed  Google Scholar 

  • Zalups RK (2000) Molecular interaction with mercury in the kidney. Pharmacol Rev 52(113):143

    Google Scholar 

  • Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121:151–157

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, Davisson RL (2002) Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res 91(11):1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Zweier JL (1988) Measurement of superoxide derived free radicals in the reperfused heart; evidence for a free radical mechanism of reperfusion injury. J Biol Chem 263:1353–1357

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Richard Jackson for his bioinformatics expertise used to generate Fig. 8.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kilgour, J., Roberts, R. (2014). Pathophysiological Roles of Reactive Oxygen and Nitrogen Species. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_10

Download citation

Publish with us

Policies and ethics