Skip to main content

Animal Models

  • Reference work entry
Pediatric Nephrology
  • 2718 Accesses

Abstract

The use of animal models has been an essential aspect of nearly all areas of nephrological research since its earliest days. Research on kidney formation and malformation, physiology and pathophysiology, immunological injury, and tolerance or transplant rejection all depend on the use of animal experimentation. This chapter will emphasize genetic approaches that utilize animals, as this area has shown the great progress in the development of novel technologies, that have had great impact in all areas of nephrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT-1 is required for early kidney development. Cell 1993;74(4):679–691.

    Article  PubMed  CAS  Google Scholar 

  2. Torres M, Gomez PE, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development 1995;121(12):4057–4065.

    PubMed  CAS  Google Scholar 

  3. Moore MW, Klein RD, Farinas I, Sauer H, Armani M, Philips H, Reichardt LF, Ryan AM, Carver-Moore K, Rosenthal A. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996;382:76–79.

    Article  PubMed  CAS  Google Scholar 

  4. Pichel JG, Shen L, Sheng HZ, Granholm A-C, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996;382:73–76.

    Article  PubMed  CAS  Google Scholar 

  5. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and absence of enteric ganglions in mice lacking GDNF. Nature 1996;382:70–74.

    Article  PubMed  CAS  Google Scholar 

  6. Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 1998;125(21):4225–4234.

    PubMed  CAS  Google Scholar 

  7. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 1995. 9(22): 2795–807.

    Article  PubMed  CAS  Google Scholar 

  8. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 1995;9(22):2808–2820.

    Article  PubMed  CAS  Google Scholar 

  9. Robertson EJ. Isolation of embryonic stem cells. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. Robertson EJ (ed.) Oxford, IRL Press, 1987, pp. 71–112.

    Google Scholar 

  10. Bradley A. Production and analysis of chimeric mice. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. Robertson EJ (ed.) Oxford, IRL Press, 1987, pp. 113–151.

    Google Scholar 

  11. Thomas KR, Capecchi MR. Targeting of genes to specific sites in the mammalian genome. Cold Spring Harb Symp Quant Biol 1986;51(1):1101–1113.

    Article  PubMed  CAS  Google Scholar 

  12. Thomas KR, Deng C, Capecchi MR. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol 1992;12(7):2919–2923.

    PubMed  CAS  Google Scholar 

  13. Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet 1989;5(3):70–76.

    Article  PubMed  CAS  Google Scholar 

  14. Orban PC, Chui D, Marth JD. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 1992;89(15):6861–6865.

    Article  PubMed  CAS  Google Scholar 

  15. Sauer B. Inducible gene targeting in mice using the Cre/lox system. Methods 1998;14(4):381–392.

    Article  PubMed  CAS  Google Scholar 

  16. Stricklett PK, Nelson RD, Kohan DE. The Cre/loxP system and gene targeting in the kidney. Am J Physiol 1999;276(5 Pt 2):F651–F657.

    PubMed  CAS  Google Scholar 

  17. Furth PA, St. Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L. Temporal control of gene expression in transgenic mice by a tetracycline responsive promoter. PNAS 1994;91:9302–9306.

    Article  PubMed  CAS  Google Scholar 

  18. Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, Penninger JM, Molkentin JD. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 2001;89(1):20–25.

    Article  PubMed  CAS  Google Scholar 

  19. Verrou C, Zhang Y, Zurn C, Schamel WW, Reth M. Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol Chem 1999;380(12):1435–1438.

    Article  PubMed  CAS  Google Scholar 

  20. Gawlik A, Quaggin SE. Conditional gene targeting in the kidney. Curr Mol Med 2005;5(5):527–536.

    Article  PubMed  CAS  Google Scholar 

  21. Park JS, Valerius MT, McMahon AP. Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 2007;134(13):2533–2539.

    Article  PubMed  CAS  Google Scholar 

  22. Moeller MJ, Sanden SK, Soofi A, Wiggins RC, Holzman LB. Two gene fragments that direct podocyte-specific expression in transgenic mice. J Am Soc Nephrol 2002;13(6):1561–1567.

    Article  PubMed  CAS  Google Scholar 

  23. Wong MA, Cui S, Quaggin SE. Identification and characterization of a glomerular-specific promoter from the human nephrin gene. Am J Physiol Renal Physiol 2000;279:F1027–F1032.

    PubMed  CAS  Google Scholar 

  24. Eremina V, Wong MA, Cui S, Schwartz L, Quaggin SE. Glomerular-specific gene excision in vivo. J Am Soc Nephrol 2002;13(3):788–793.

    PubMed  CAS  Google Scholar 

  25. Li H, Zhou X, Davis DR, Xu D, Sigmund CD. An androgen-inducible proximal tubule-specific Cre recombinase transgenic model. Am J Physiol Renal Physiol 2008;294(6):F1481–F1486.

    Article  PubMed  CAS  Google Scholar 

  26. Dworniczak B, Skryabin B, Tchinda J, Heuck S, Seesing FJ, Metzger D, Chambon P, Horst J, Pennekamp P. Inducible Cre/loxP recombination in the mouse proximal tubule. Nephron Exp Nephrol 2007;106(1):e11–20.

    Article  PubMed  CAS  Google Scholar 

  27. Rubera I, Poujeol C, Bertin G, Hasseine L, Counillon L, Poujeol P, Tauc M. Specific Cre/Lox recombination in the mouse proximal tubule. J Am Soc Nephrol 2004;15(8):2050–2056.

    Article  PubMed  CAS  Google Scholar 

  28. Stricklett PK, Taylor D, Nelson RD, Kohan DE. Thick ascending limb-specific expression of Cre recombinase. Am J Physiol Renal Physiol 2003;285(1):F33–F39.

    PubMed  CAS  Google Scholar 

  29. Marose TD, Merkel CE, McMahon AP, Carroll TJ. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 2008;314(1):112–126.

    Article  PubMed  CAS  Google Scholar 

  30. Stricklett PK, Nelson RD, Kohan DE. Targeting collecting tubules using the aquaporin-2 promoter. Exp Nephrol 1999;7(1):67–74.

    Article  PubMed  CAS  Google Scholar 

  31. Li WL, Cheng X, Tan XH, Zhang JS, Sun YS, Chen L, Yang X. Endothelial cell-specific expression of Cre recombinase in transgenic mice. Yi Chuan Xue Bao 2005;32(9):909–915.

    PubMed  CAS  Google Scholar 

  32. Licht AH, Raab S, Hofmann U, Breier G. Endothelium-specific Cre recombinase activity in flk-1-Cre transgenic mice. Dev Dyn 2004;229(2):312–318.

    Article  PubMed  CAS  Google Scholar 

  33. Cattelino A, Liebner S, Gallini R, Zanetti A, Balconi G, Corsi A, Bianco P, Wolburg H, Moore R, Oreda B, Kemler R, Dejana E. The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 2003;162(6):1111–1122.

    Article  PubMed  CAS  Google Scholar 

  34. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 2005;33(4):e36.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang XM, Huang JD. Combination of overlapping bacterial artificial chromosomes by a two-step recombinogenic engineering method. Nucleic Acids Res 2003;31(15):e81.

    Article  PubMed  Google Scholar 

  36. Testa G, Zhang Y, Vintersten K, Benes V, Pijnappel WW, Chambers I, Smith AJ, Smith AG, Stewart AF. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat Biotechnol 2003;21(4):443–447.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng JC, Moore TB, Sakamoto KM. RNA interference and human disease. Mol Genet Metab 2003;80(1–2):121–128.

    Article  PubMed  CAS  Google Scholar 

  38. Campbell TN, Choy FY. RNA interference: past, present and future. Curr Issues Mol Biol 2005;7(1):1–6.

    PubMed  CAS  Google Scholar 

  39. Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell 2004;117(1):1–3.

    Article  PubMed  CAS  Google Scholar 

  40. Shukla V, Coumoul X, Deng CX. RNAi-based conditional gene knockdown in mice using a U6 promoter driven vector. Int J Biol Sci 2007;3(2):91–99.

    Article  PubMed  CAS  Google Scholar 

  41. Coumoul X, Deng CX. RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie 2006;88(6):637–643.

    Article  PubMed  CAS  Google Scholar 

  42. Vintersten K, Testa G, Naumann R, Anastassiadis K, Stewart AF. Bacterial artificial chromosome transgenesis through pronuclear injection of fertilized mouse oocytes. Methods Mol Biol 2008;415:83–100.

    PubMed  CAS  Google Scholar 

  43. Feng G, Lu J, Gross J. Generation of transgenic mice. Methods Mol Med 2004;99:255–267.

    PubMed  CAS  Google Scholar 

  44. Isola LM, Gordon JW. Transgenic animals: a new era in developmental biology and medicine. Biotechnology 1991;16:3–20.

    PubMed  CAS  Google Scholar 

  45. Gordon JW, Ruddle FH. Gene transfer into mouse embryos: production of transgenic mice by pronuclear injection. Methods Enzymol 1983;101:411–433.

    Article  PubMed  CAS  Google Scholar 

  46. Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, Schutz G. A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res 1993;21(20):4783–4787.

    Article  PubMed  CAS  Google Scholar 

  47. Nottle MB, Nagashima H, Verma PJ, Du ZT, Grupen CG, Ashman RJ, MacIlfatrick S. Developments in transgenic techniques in pigs. J Reprod Fertil Suppl 1997;52:237–244.

    PubMed  CAS  Google Scholar 

  48. Filipiak WE, Saunders TL. Advances in transgenic rat production. Transgenic Res 2006;15(6):673–686.

    Article  PubMed  CAS  Google Scholar 

  49. Majumdar A, Drummond IA. Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev Genet 1999;24(3–4):220–229.

    Article  PubMed  CAS  Google Scholar 

  50. Drummond I. Making a zebrafish kidney: a tale of two tubes. Trends Cell Biol 2003;13(7):357–365.

    Article  PubMed  Google Scholar 

  51. Hostetter CL, Sullivan-Brown JL, Burdine RD. Zebrafish pronephros: a model for understanding cystic kidney disease. Dev Dyn 2003;228(3):514–522.

    Article  PubMed  CAS  Google Scholar 

  52. Drummond IA. Zebrafish kidney development. Methods Cell Biol 2004;76:501–530.

    Article  PubMed  CAS  Google Scholar 

  53. Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 2004;131(16):4085–4093.

    Article  PubMed  CAS  Google Scholar 

  54. Hentschel DM, Park KM, Cilenti L, Zervos AS, Drummond I, Bonventre JV. Acute renal failure in zebrafish: a novel system to study a complex disease. Am J Physiol Renal Physiol 2005;288(5):F923–F929.

    Article  PubMed  CAS  Google Scholar 

  55. Hentschel DM, Mengel M, Boehme L, Liebsch F, Albertin C, Bonventre JV, Haller H, Schiffer M. Rapid screening of glomerular slit diaphragm integrity in larval zebrafish. Am J Physiol Renal Physiol 2007;293(5):F1746–F1750.

    Article  PubMed  CAS  Google Scholar 

  56. Fishman MC. Zebrafish genetics: the enigma of arrival. Proc Natl Acad Sci USA 1999;96(19):10554–10556.

    Article  PubMed  CAS  Google Scholar 

  57. Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S, Jackson D, de Sauvage F, Jacob H, Fishman MC. Zebrafish genetic map with 2000 microsatellite markers. Genomics 1999;58(3):219–232.

    Article  PubMed  CAS  Google Scholar 

  58. Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC, Jacob HJ. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 1998;18(4):338–343.

    Article  PubMed  CAS  Google Scholar 

  59. Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 1998;125(23):4655–4667.

    PubMed  CAS  Google Scholar 

  60. Liu S, Lu W, Obara T, Kuida S, Lehoczky J, Dewar K, Drummond IA, Beier DR. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 2002;129(24):5839–5846.

    Article  PubMed  CAS  Google Scholar 

  61. Briggs JP. The zebrafish: a new model organism for integrative physiology. Am J Physiol Regul Integr Comp Physiol 2002;282(1):R3–9.

    PubMed  CAS  Google Scholar 

  62. Serluca FC, Fishman MC. Pre-pattern in the pronephric kidney field of zebrafish. Development 2001;128(12):2233–2241.

    PubMed  CAS  Google Scholar 

  63. Majumdar A, Drummond IA. The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation. Dev Biol 2000;222(1):147–157.

    Article  PubMed  CAS  Google Scholar 

  64. Drummond IA. The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol 2000;14(5):428–435.

    Article  PubMed  CAS  Google Scholar 

  65. Majumdar A, Lun K, Brand M, Drummond IA. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 2000;127(10):2089–2098.

    PubMed  CAS  Google Scholar 

  66. Vogel G. GENOMICS: Sanger will sequence zebrafish genome. Science 2000;290(5497):1671b.

    Article  PubMed  CAS  Google Scholar 

  67. Stickney HL, Schmutz J, Woods IG, Holtzer CC, Dickson MC, Kelly PD, Myers RM, Talbot WS. Rapid mapping of zebrafish mutations with SNPs and oligonucleotide microarrays. Genome Res 2002;12(12):1929–1934.

    Article  PubMed  CAS  Google Scholar 

  68. Bradley KM, Elmore JB, Breyer JP, Yaspan BL, Jessen JR, Knapik EW, Smith JR. A major zebrafish polymorphism resource for genetic mapping. Genome Biol 2007;8(4):R55.

    Article  PubMed  CAS  Google Scholar 

  69. Damert A, Kusserow H. Generation of transgenic mice by pronuclear injection. Methods Mol Med 2003;89:513–528.

    PubMed  CAS  Google Scholar 

  70. Gaiano N, Allende M, Amsterdam A, Kawakami K, Hopkins N. Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci USA 1996;93(15):7777–7782.

    Article  PubMed  CAS  Google Scholar 

  71. Gaiano N, Hopkins N. Introducing genes into zebrafish. Biochim Biophys Acta 1996;1288(1):O11–14.

    PubMed  Google Scholar 

  72. Amsterdam A, Hopkins N. Retrovirus-mediated insertional mutagenesis in zebrafish. Methods Cell Biol 1999;60:87–98.

    Article  PubMed  CAS  Google Scholar 

  73. Talbot WS, Hopkins N. Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev 2000;14(7):755–762.

    PubMed  CAS  Google Scholar 

  74. Amsterdam A, Hopkins N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 2006;22(9):473–478.

    Article  PubMed  CAS  Google Scholar 

  75. Draper BW, Morcos PA, Kimmel CB. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 2001;30(3):154–156.

    Article  PubMed  CAS  Google Scholar 

  76. Scholpp S, Brand M. Morpholino-induced knockdown of zebrafish engrailed genes eng2 and eng3 reveals redundant and unique functions in midbrain–hindbrain boundary development. Genesis 2001;30(3):129–133.

    Article  PubMed  CAS  Google Scholar 

  77. Hrabe de Angelis M, Strivens M. Large-scale production of mouse phenotypes: the search for animal models for inherited diseases in humans. Brief Bioinform 2001;2(2):170–180.

    Article  PubMed  CAS  Google Scholar 

  78. Nolan PM, Peters J, Vizor L, Strivens M, Washbourne R, Hough T, Wells C, Glenister P, Thornton C, Martin J, Fisher E, Rogers D, Hagan J, Reavill C, Gray I, Wood J, Spurr N, Browne M, Rastan S, Hunter J, Brown SD. Implementation of a large-scale ENU mutagenesis program: towards increasing the mouse mutant resource. Mamm Genome 2000;11(7):500–506.

    Article  PubMed  CAS  Google Scholar 

  79. Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, Om J, Woychik RP, Magnuson T. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet 2000;24(3):314–317.

    Article  PubMed  CAS  Google Scholar 

  80. Anderson KV. Finding the genes that direct mammalian development: ENU mutagenesis in the mouse. Trends Genet 2000;16(3):99–102.

    Article  PubMed  CAS  Google Scholar 

  81. Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A. Mouse ENU mutagenesis. Hum Mol Genet 1999;8(10):1955–1963.

    Article  PubMed  CAS  Google Scholar 

  82. Hrabe de Angelis M, Balling R. Large scale ENU screens in the mouse: genetics meets genomics. Mutat Res 1998;400(1–2):25–32.

    PubMed  CAS  Google Scholar 

  83. Knapik EW. ENU mutagenesis in zebrafish–from genes to complex diseases. Mamm Genome 2000;11(7):511–519.

    Article  PubMed  CAS  Google Scholar 

  84. Beckwith LG, Moore JL, Tsao-Wu GS, Harshbarger JC, Cheng KC. Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab Invest 2000;80(3):379–385.

    Article  PubMed  CAS  Google Scholar 

  85. Weinstein BM, Schier AF, Abdelilah S, Malicki J, Solnica-Krezel L, Stemple DL, Stainier DY, Zwartkruis F, Driever W, Fishman MC. Hematopoietic mutations in the zebrafish. Development 1996;123:303–309.

    PubMed  CAS  Google Scholar 

  86. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996;123:1–36.

    PubMed  CAS  Google Scholar 

  87. Solnica-Krezel L, Schier AF, Driever W. Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 1994;136(4):1401–1420.

    PubMed  CAS  Google Scholar 

  88. Dietrich WF, Copeland NG, Gilbert DJ, Miller JC, Jenkins NA, Lander ES. Mapping the mouse genome: current status and future prospects. Proc Natl Acad Sci USA 1995;92(24):10849–10853.

    Article  PubMed  CAS  Google Scholar 

  89. Brown DM, Matise TC, Koike G, Simon JS, Winer ES, Zangen S, McLaughlin MG, Shiozawa M, Atkinson OS, Hudson JR Jr., Chakravarti A, Lander ES, Jacob HJ. An integrated genetic linkage map of the laboratory rat. Mamm Genome 1998;9(7):521–530.

    Article  PubMed  CAS  Google Scholar 

  90. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M. Lander ES. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998;280(5366):1077–1082.

    Article  PubMed  CAS  Google Scholar 

  91. Tsang S, Sun Z, Luke B, Stewart C, Lum N, Gregory M, Wu X, Subleski M, Jenkins NA, Copeland NG, Munroe DJ. A comprehensive SNP-based genetic analysis of inbred mouse strains. Mamm Genome 2005;16(7):476–480.

    Article  PubMed  CAS  Google Scholar 

  92. Grant SF, Hakonarson H. Microarray technology and applications in the arena of genome-wide association. Clin Chem 2008;54(7):1116–1124.

    Article  PubMed  CAS  Google Scholar 

  93. Patil N, Nouri N, McAllister L, Matsukaki H, Ryder T. Single-nucleotide polymorphism genotyping using microarrays. Curr Protoc Hum Genet 2001. Chapter 2: Unit 29.

    Google Scholar 

  94. Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, Korstanje R, Wang X, Nusskern D, Bogue MA, Mural RJ, Paigen B, Wiltshire T. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2004;2(12):e393.

    Article  PubMed  CAS  Google Scholar 

  95. Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, Bennett B, Blankenhorn EP, Blizard DA, Bolivar V, Brockmann GA, Buck KJ, Bureau JF, Casley WL, Chesler EJ, Cheverud JM, Churchill GA, Cook M, Crabbe JC, Crusio WE, Darvasi A, de Haan G, Dermant P, Doerge RW, Elliot RW, Farber CR, Flaherty L, Flint J, Gershenfeld H, Gibson JP, Gu J, Gu W, Himmelbauer H, Hitzemann R, Hsu HC, Hunter K, Iraqi FF, Jansen RC, Johnson TE, Jones BC, Kempermann G, Lammert F, Lu L, Manly KF, Matthews DB, Medrano JF, Mehrabian M, Mittlemann G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Mountz JD, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Paigen B, Palmer AA, Peirce JL, Pomp D, Rosemann M, Rosen GD, Schalkwyk LC, Seltzer Z, Settle S, Shimomura K, Shou S, Sikela JM, Siracusa LD, Spearow JL, Teuscher C, Threadgill DW, Toth LA, Toye AA, Vadasz C, Van Zant G, Wakeland E, Williams RW, Zhang HG, Zou F. The nature and identification of quantitative trait loci: a community's view. Nat Rev Genet 2003;4(11):911–916.

    Article  PubMed  CAS  Google Scholar 

  96. Korstanje R, Paigen B. From QTL to gene: the harvest begins. Nat Genet 2002;31(3):235–236.

    Article  PubMed  CAS  Google Scholar 

  97. DiPetrillo K, Wang X, Stylianou IM, Paigen B. Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet 2005;21(12):683–692.

    Article  PubMed  CAS  Google Scholar 

  98. Cuppen E. Haplotype-based genetics in mice and rats. Trends Genet 2005;21(6):318–322.

    Article  PubMed  CAS  Google Scholar 

  99. Guryev V, Smits BM, van de Belt J, Verheul M, Hubner N, Cuppen E. Haplotype block structure is conserved across mammals. PLoS Genet 2006;2(7):1767–1772.

    Article  CAS  Google Scholar 

  100. Wang X, Korstanje R, Higgins D, Paigen B. Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res 2004;14(9):1767–1772.

    Article  PubMed  CAS  Google Scholar 

  101. Wittenburg H, Lyons MA, Li R, Kurtz U, Wang X, Mossner J, Churchill GA, Carey MC, Paigen B. QTL mapping for genetic determinants of lipoprotein cholesterol levels in combined crosses of inbred mouse strains. J Lipid Res 2006;47(8):1780–1790.

    Article  PubMed  CAS  Google Scholar 

  102. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860–921.

    Article  PubMed  CAS  Google Scholar 

  103. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome. Science 2001;291(5507):1304–1351.

    Article  PubMed  CAS  Google Scholar 

  104. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES. Initial sequencing and comparative analysis of the mouse genome. Nature 2002;420(6915):520–562.

    Article  PubMed  CAS  Google Scholar 

  105. Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev 2006;16(6):545–552.

    Article  PubMed  CAS  Google Scholar 

  106. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM. The complete genome of an individual by massively parallel DNA sequencing. Nature 2008;452(7189):872–876.

    Article  PubMed  CAS  Google Scholar 

  107. Raven P, Fauquet C, Swaminathan MS, Borlaug N, Samper C. Where next for genome sequencing? Science 2006;311(5760):468.

    Article  PubMed  CAS  Google Scholar 

  108. Shiozawa M, Provoost AP, van Dokkum RP, Majewski RR, Jacob HJ. Evidence of gene-gene interactions in the genetic susceptibility to renal impairment after unilateral nephrectomy. J Am Soc Nephrol 2000;11(11):2068–2078.

    PubMed  CAS  Google Scholar 

  109. Kwitek-Black AE, Jacob HJ. The use of designer rats in the genetic dissection of hypertension. Curr Hypertens Rep 2001;3(1):12–18.

    Article  PubMed  CAS  Google Scholar 

  110. Stoll M, Jacob HJ. Genetic rat models of hypertension: relationship to human hypertension. Curr Hypertens Rep 2001;3(2):157–164.

    Article  PubMed  CAS  Google Scholar 

  111. Stoll M, Cowley AW Jr., Tonellato PJ, Greene AS, Kaldunski ML, Roman RJ, Dumas P, Schork NJ, Wang Z, Jacob HJ. A genomic-systems biology map for cardiovascular function. Science 2001;294(5547):1723–1726.

    Article  PubMed  CAS  Google Scholar 

  112. Jacob HJ, Kwitek AE. Rat genetics: attaching physiology and pharmacology to the genome. Nat Rev Genet 2002;3(1):33–42.

    Article  PubMed  CAS  Google Scholar 

  113. Rao GN. Diet and kidney diseases in rats. Toxicol Pathol 2002;30(6):651–656.

    Article  PubMed  CAS  Google Scholar 

  114. Ma X, Abboud FM, Chapleau MW. Analysis of afferent, central, and efferent components of the baroreceptor reflex in mice. Am J Physiol Regul Integr Comp Physiol 2002;283(5):R1033–1040.

    PubMed  Google Scholar 

  115. Ishii T, Kuwaki T, Masuda Y, Fukuda Y. Postnatal development of blood pressure and baroreflex in mice. Auton Neurosci 2001;94(1–2):34–41.

    Article  PubMed  CAS  Google Scholar 

  116. Gross V, Plehm R, Tank J, Jordan J, Diedrich A, Obst M, Luft FC. Heart rate variability and baroreflex function in AT2 receptor-disrupted mice. Hypertension 2002;40(2):207–213.

    Article  PubMed  CAS  Google Scholar 

  117. Rokosh DG, Simpson PC. Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 2002;99(14):9474–9479.

    Article  PubMed  CAS  Google Scholar 

  118. Besnard S, Bakouche J, Lemaigre-Dubreuil Y, Mariani J, Tedgui A, Henrion D. Smooth muscle dysfunction in resistance arteries of the staggerer mouse, a mutant of the nuclear receptor RORalpha. Circ Res 2002;90(7):820–825.

    Article  PubMed  CAS  Google Scholar 

  119. Vecchione C,Fratta L, Rizzoni D, Notte A, Poulet R, Porteri E, Frati G, Guelfi D, Trimarco V, Mulvany MJ, Agabiti-Rosei E, Trimarco B, Cotecchia S, Lembo G. Cardiovascular influences of alpha1b-adrenergic receptor defect in mice. Circulation 2002;105(14):1700–1707.

    Article  PubMed  CAS  Google Scholar 

  120. Gross V, Luft FC. Adapting renal and cardiovascular physiology to the genetically hypertensive mouse. Semin Nephrol 2002;22(2):172–179.

    Article  PubMed  Google Scholar 

  121. Holschneider DP, Scremin OU, Roos KP, Chialvo DR, Chen K, Shih JC. Increased baroreceptor response in mice deficient in monoamine oxidase A and B. Am J Physiol Heart Circ Physiol 2002;282(3):H964–972.

    PubMed  CAS  Google Scholar 

  122. Edouga D, Hugueny B, Gasser B, Bussieres L, Laborde K. Recovery after relief of fetal urinary obstruction: morphological, functional and molecular aspects. Am J Physiol Renal Physiol 2001;281(1):F26–37.

    PubMed  CAS  Google Scholar 

  123. Kitagawa H, Pringle KC, Zuccollo J, Koike J, Nakada K, Ikoma M, Seki Y. Glomerular size in renal dysplasia secondary to obstructive uropathy: a further exploration of the fetal lamb model. J Pediatr Surg 2000;35(11):1651–1615.

    Article  PubMed  CAS  Google Scholar 

  124. Kitagawa H, Pringle KC, Zucollo J, Koike J, Nakada K, Moriya H, Seki Y. Early fetal obstructive uropathy produces Potter's syndrome in the lamb. J Pediatr Surg 2000;35(11):1549–1553.

    Article  PubMed  CAS  Google Scholar 

  125. Smith LM, Ervin MG, Wada N, Ikegami M, Polk DH, Jobe AH. Antenatal glucocorticoids alter postnatal preterm lamb renal and cardiovascular responses to intravascular volume expansion. Pediatr Res 2000;47(5):622–627.

    Article  PubMed  CAS  Google Scholar 

  126. Kitagawa H, Pringle KC, Zuccolo J, Stone P, Nakada K, Kawaguchi F, Nakada M, Wakisaka M, Furuta S, Koike J, Seki Y. The pathogenesis of dysplastic kidney in a urinary tract obstruction in the female fetal lamb. J Pediatr Surg 1999;34(11):1678–1683.

    Article  PubMed  CAS  Google Scholar 

  127. Wang J, Rose JC. Developmental changes in renal renin mRNA half-life and responses to stimulation in fetal lambs. Am J Physiol 1999;277(4 Pt 2):R1130–1135.

    PubMed  CAS  Google Scholar 

  128. Gimonet V, Bussieres L, Medjebeur AA, Gasser B, Lelongt B, Laborde K. Nephrogenesis and angiotensin II receptor subtypes gene expression in the fetal lamb. Am J Physiol 1998;274(6 Pt 2):F1062–1069.

    PubMed  CAS  Google Scholar 

  129. Nguyen HT, Kogan BA. Renal hemodynamic changes after complete and partial unilateral ureteral obstruction in the fetal lamb. J Urol 1998;160(3 Pt 2):1063–1069.

    Article  PubMed  CAS  Google Scholar 

  130. Wang J, Perez FM, Rose JC. Developmental changes in renin-containing cells from the ovine fetal kidney. J Soc Gynecol Investig 1997;4(4):191–196.

    Article  PubMed  CAS  Google Scholar 

  131. Berry LM, Polk DH, Ikegami M, Jobe AH, Padbury JF, Ervin MG. Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am J Physiol 1997;272(6 Pt 2):R1972–1979.

    PubMed  CAS  Google Scholar 

  132. Matsell DG, Bennett T, Bocking AD. Characterization of fetal ovine renal dysplasia after mid-gestation ureteral obstruction. Clin Invest Med 1996;19(6):444–452.

    PubMed  CAS  Google Scholar 

  133. Peters CA, Gaertner RC, Carr MC, Mandell J. Fetal compensatory renal growth due to unilateral ureteral obstruction. J Urol 1993;150(2 Pt 2):597–600.

    PubMed  CAS  Google Scholar 

  134. Peters CA, Docimo SG, Luetic T, Reid LM, Retik AB, Mandell J. Effect of in utero vesicostomy on pulmonary hypoplasia in the fetal lamb with bladder outlet obstruction and oligohydramnios: a morphometric analysis. J Urol 1991;146(4):1178–1183.

    PubMed  CAS  Google Scholar 

  135. Rosines E, Sampogna RV, Johkura K, Vaughn DA, Choi Y, Sakurai H, Shah MM, Nigam SK. Staged in vitro reconstitution and implantation of engineered rat kidney tissue. Proc Natl Acad Sci USA 2007;104(52):20938–20943.

    Article  PubMed  CAS  Google Scholar 

  136. Fissell WH. Developments towards an artificial kidney. Expert Rev Med Devices 2006;3(2):155–165.

    Article  PubMed  Google Scholar 

  137. Hammerman MR. Tissue engineering the kidney. Kidney Int 2003;63(4):1195–1204.

    Article  PubMed  Google Scholar 

  138. Chugh S, Yuan H, Topham PS, Haydar SA, Mittal V, Taylor GA, Kalluri R, Salant DJ. Aminopeptidase A: a nephritogenic target antigen of nephrotoxic serum. Kidney Int 2001;59(2):601–613.

    Article  PubMed  CAS  Google Scholar 

  139. Cook HT, Khan SB, Allen A, Bhangal G, Smith J, Lobb RR, Pusey CD. Treatment with an antibody to VLA-1 integrin reduces glomerular and tubulointerstitial scarring in a rat model of crescentic glomerulonephritis. Am J Pathol 2002;161(4):1265–1272.

    Article  PubMed  CAS  Google Scholar 

  140. Hiromura K, Haseley LA, Zhang P, Monkawa T, Durvasula R, Petermann AT, Alpers CE, Mundel P, Shankland SJ. Podocyte expression of the CDK-inhibitor p57 during development and disease. Kidney Int 2001;60(6):2235–2246.

    Article  PubMed  CAS  Google Scholar 

  141. Lin F, Emancipator SN, Salant DJ, Medof ME. Decay-accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis. Lab Invest 2002;82(5):563–569.

    Article  PubMed  CAS  Google Scholar 

  142. Topham PS, Csizmadia V, Soler D, Hines D, Gerard CJ, Salant DJ, Hancock WW. Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest 1999;104(11):1549–1557.

    Article  PubMed  CAS  Google Scholar 

  143. Xu Y, Berrou J, Chen X, Fouqueray B, Callard P, Sraer JD, Rondeau E. Induction of urokinase receptor expression in nephrotoxic nephritis. Exp Nephrol 2001;9(6):397–404.

    Article  PubMed  CAS  Google Scholar 

  144. Yanagita M, Ishimoto Y, Arai H, Nagai K, Ito T, Nakano T, Salant DJ, Fukatsu A, Doi T, Kita T. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. J Clin Invest 2002;110(2):239–246.

    PubMed  CAS  Google Scholar 

  145. Carmago S, Shah SV, Walker PD. Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rats. Kidney Int 2002;61(3):959–966.

    Article  PubMed  CAS  Google Scholar 

  146. Chatterjee PK, Brown PA, Cuzzocrea S, Zacharowski K, Stewart KN, Mota-Filipe H, McDonald MC, Thiemermann C. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat. Kidney Int 2001;59(6):2073–2083.

    PubMed  CAS  Google Scholar 

  147. Fernandez M, Medina A, Santos F, Carbajo E, Rodriguez J, Alvarez J, Cobo A. Exacerbated inflammatory response induced by insulin-like growth factor I treatment in rats with ischemic acute renal failure. J Am Soc Nephrol 2001;12(9):1900–1907.

    PubMed  CAS  Google Scholar 

  148. Gimelreich D, Popovtzer MM, Wald H, Pizov G, Berlatzky Y, Rubinger D. Regulation of ROMK and channel-inducing factor (CHIF) in acute renal failure due to ischemic reperfusion injury. Kidney Int 2001;59(5):1812–1820.

    Article  PubMed  CAS  Google Scholar 

  149. Gretz N. The development of hypertension in the remnant kidney model after either pole resection or partial infarction of the kidney. J Am Soc Nephrol 1995;5(10):1839–1840.

    PubMed  CAS  Google Scholar 

  150. Jia ZQ, Worthington AE, Hill RP, Hunt JW. The effects of artery occlusion on temperature homogeneity during hyperthermia in rabbit kidneys in vivo. Int J Hyperthermia 1997;13(1):21–37.

    Article  PubMed  CAS  Google Scholar 

  151. Kakoki M, Hirata Y, Hayakawa H, Suzuki E, Nagata D, Nishimatsu H, Kimura K, Goto A, Omata M. Effects of vasodilatory antihypertensive agents on endothelial dysfunction in rats with ischemic acute renal failure. Hypertens Res 2000;23(5):527–533.

    Article  PubMed  CAS  Google Scholar 

  152. Knoll T, Schult S, Birck R, Braun C, Michel MS, Bross S, Juenemann KP, Kirchengast M, Rohmeiss P. Therapeutic administration of an endothelin-A receptor antagonist after acute ischemic renal failure dose-dependently improves recovery of renal function. J Cardiovasc Pharmacol 2001;37(4):483–488.

    Article  PubMed  CAS  Google Scholar 

  153. Kren S, Hostetter TH. The course of the remnant kidney model in mice. Kidney Int 1999;56(1):333–337.

    Article  PubMed  CAS  Google Scholar 

  154. Kwon O, Phillips CL, Molitoris BA. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 2002;282(6):F1012–1019.

    PubMed  CAS  Google Scholar 

  155. Lieberthal W, Fuhro R, Andry CC, Rennke H, Abernathy VE, Koh JS, Valeri R, Levine JS. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol 2001;281(4):F693–706.

    PubMed  CAS  Google Scholar 

  156. Lloberas N, Torras J, Herrero-Fresneda I, Cruzado JM, Riera M, Hurtado I, Grinyo JM. Postischemic renal oxidative stress induces inflammatory response through PAF and oxidized phospholipids. Prevention by antioxidant treatment. Faseb J 2002;16(8):908–910.

    CAS  Google Scholar 

  157. Megyesi J, Andrade L, Vieira JM Jr., Safirstein RL, Price PM. Positive effect of the induction of p21WAF1/CIP1 on the course of ischemic acute renal failure. Kidney Int 2001;60(6):2164–2172.

    Article  PubMed  CAS  Google Scholar 

  158. Meldrum KK, Hile K, Meldrum DR, Crone JA, Gearhart JP, Burnett AL. Simulated ischemia induces renal tubular cell apoptosis through a nuclear factor-kappaB dependent mechanism. J Urol 2002;168(1):248–252.

    Article  PubMed  CAS  Google Scholar 

  159. Modolo NS, Castiglia YM, Ganem EM, Braz JR, Vianna PT, Vane LA. Acute renal ischemia model in dogs: effects of metoprolol. Ren Fail 2001;23(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  160. Mister M, Noris M, Szymczuk J, Azzollini N, Aiello S, Abbate M, Trochimowicz L, Gagliardini E, Arduini A, Perico N, Remuzzi G. Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion. Kidney Int 2002;61(3):1064–1078.

    Article  PubMed  CAS  Google Scholar 

  161. Okusa MD. The inflammatory cascade in acute ischemic renal failure. Nephron 2002;90(2):133–138.

    Article  PubMed  CAS  Google Scholar 

  162. Power JM, Tonkin AM. Large animal models of heart failure. Aust N Z J Med 1999;29(3):395–402.

    Article  PubMed  CAS  Google Scholar 

  163. Textor SC. Pathophysiology of renal failure in renovascular disease. Am J Kidney Dis 1994;24(4):642–651.

    PubMed  CAS  Google Scholar 

  164. Vaneerdeweg W, Buyssens N, De Winne T, Sebrechts M, Babloyan A, Arakelian S, De Broe ME. A standardized surgical technique to obtain a stable and reproducible chronic renal failure model in dogs. Eur Surg Res 1992;24(5):273–282.

    Article  PubMed  CAS  Google Scholar 

  165. Yoshida T, Tang SS, Hsiao LL, Jensen RV, Ingelfinger JR, Gullans SR. Global analysis of gene expression in renal ischemia-reperfusion in the mouse. Biochem Biophys Res Commun 2002;291(4):787–794.

    Article  PubMed  CAS  Google Scholar 

  166. Chevalier RL. Chronic partial ureteral obstruction and the developing kidney. Pediatr Radiol 2008;38 Suppl 1:S35–40.

    Article  PubMed  Google Scholar 

  167. Ma FY, Tesch GH, Flavell RA, Davis RJ, Nikolic-Paterson DJ. MKK3-p38 signaling promotes apoptosis and the early inflammatory response in the obstructed mouse kidney. Am J Physiol Renal Physiol 2007;293(5):F1556–1563.

    Article  PubMed  CAS  Google Scholar 

  168. Chevalier RL. Pathogenesis of renal injury in obstructive uropathy. Curr Opin Pediatr 2006;18(2):153–160.

    Article  PubMed  Google Scholar 

  169. Foster MH. Relevance of systemic lupus erythematosus nephritis animal models to human disease. Semin Nephrol 1999;19(1):12–24.

    PubMed  CAS  Google Scholar 

  170. Morel L and Wakeland EK. Susceptibility to lupus nephritis in the NZB/W model system. Curr Opin Immunol 1998;10(6):718–725.

    Article  PubMed  CAS  Google Scholar 

  171. Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology 1998;199(2):265–285.

    Article  PubMed  CAS  Google Scholar 

  172. Gavalchin J, Staines NA. T and B cell recognition of idiotypes of anti-DNA autoantibodies. Lupus 1997;6(3):337–343.

    Article  PubMed  CAS  Google Scholar 

  173. Isenberg DA, Ravirajan CT, Rahman A, Kalsi J. The role of antibodies to DNA in systemic lupus erythematosus–a review and introduction to an international workshop on DNA antibodies held in London, May 1996. Lupus 1997;6(3):290–304.

    Article  PubMed  CAS  Google Scholar 

  174. Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, Botto M. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 2002;31(4):424–428.

    PubMed  CAS  Google Scholar 

  175. Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, Ashwell JD, Fornace AJ, Jr. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 2002;16(4):499–508.

    Article  PubMed  CAS  Google Scholar 

  176. Tabata N, Miyazawa M, Fujisawa R, Takei YA, Abe H, Hashimoto K. Establishment of monoclonal anti-retroviral gp70 autoantibodies from MRL/lpr lupus mice and induction of glomerular gp70 deposition and pathology by transfer into non-autoimmune mice. J Virol 2000;74(9):4116–4126.

    Article  PubMed  CAS  Google Scholar 

  177. Cruse JM, Lewis RE, Dilioglou S. Fate of immune complexes, glomerulonephritis, and cell-mediated vasculitis in lupus-prone MRL/Mp lpr/lpr mice. Exp Mol Pathol 2000;69(3):211–222.

    Article  PubMed  CAS  Google Scholar 

  178. Ophascharoensuk V, Fero ML, Hughes J, Roberts JM, Shankland SJ.The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nat Med 1998;4(5):575–580.

    Article  PubMed  CAS  Google Scholar 

  179. Cattell V, Cook HT, Ebrahim H, Waddington SN, Wei XQ, Assmann KJ, Liew FY. Anti-GBM glomerulonephritis in mice lacking nitric oxide synthase type 2. Kidney Int 1998;53(4):932–936.

    Article  PubMed  CAS  Google Scholar 

  180. Quigg RJ, Lim A, Haas M, Alexander JJ, He C, Carroll MC. Immune complex glomerulonephritis in C4- and C3-deficient mice. Kidney Int 1998;53(2):320–330.

    Article  PubMed  CAS  Google Scholar 

  181. Tang T, Rosenkranz A, Assmann KJ, Goodman MJ, Gutierrez-Ramos JC, Carroll MC, Cotran RS, Mayadas TN. A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J Exp Med 1997;186(11):1853–1863.

    Article  PubMed  CAS  Google Scholar 

  182. Ito MR, Terasaki S, Itoh J, Katoh H, Yonehara S, Nose M. Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand. Arthritis Rheum 1997;40(6):1054–1063.

    Article  PubMed  CAS  Google Scholar 

  183. Haas C, Ryffel B, Le Hir M. IFN-gamma is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J Immunol 1997;158(11):5484–5491.

    PubMed  CAS  Google Scholar 

  184. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker SA, Dunn AR. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995;83(2):301–311.

    Article  PubMed  CAS  Google Scholar 

  185. Cyster JG. Lymphoid organ development and cell migration. Immunol Rev 2003;195:5–14.

    Article  PubMed  CAS  Google Scholar 

  186. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001;410(6824):101–105.

    Article  PubMed  CAS  Google Scholar 

  187. Gudmundsdottir H, Turka LA. T cell costimulatory blockade: new therapies for transplant rejection. J Am Soc Nephrol 1999;10(6):1356–1365.

    PubMed  CAS  Google Scholar 

  188. Dong VM, Womer KL, Sayegh MH. Transplantation tolerance: the concept and its applicability. Pediatr Transplant 1999;3(3):181–192.

    Article  PubMed  CAS  Google Scholar 

  189. Bromberg JS, Murphy B. Routes to allograft survival. J Clin Invest 2001;107(7):797–798.

    Article  PubMed  CAS  Google Scholar 

  190. Light J, Salomon DR, Diethelm AG, Alexander JW, Hunsicker L, Thistlethwaite R, Reinsmoen N, Stablein DM. Bone marrow transfusions in cadaver renal allografts: pilot trials with concurrent controls. Clin Transplant 2002;16(5):317–324.

    Article  PubMed  Google Scholar 

  191. Knechtle SJ, Hamawy MM, Hu H, Fechner JH, Jr, Cho CS. Tolerance and near-tolerance strategies in monkeys and their application to human renal transplantation. Immunol Rev 2001;183:205–213.

    Article  PubMed  CAS  Google Scholar 

  192. Inverardi L, Ricordi C. Tolerance and pancreatic islet transplantation. Philos Trans R Soc Lond B Biol Sci 2001;356(1409):759–765.

    Article  PubMed  CAS  Google Scholar 

  193. Field EH, Strober S. Tolerance, mixed chimerism and protection against graft-versus-host disease after total lymphoid irradiation. Philos Trans R Soc Lond B Biol Sci 2001;356(1409):89–95.

    Google Scholar 

  194. Decker CJ, Heiser AD, Chaturvedi PR, Faust TJ, Ku G, Moseley S, Nimmesgern E. The novel IMPDH inhibitor VX-497 prolongs skin graft survival and improves graft versus host disease in mice. Drugs Exp Clin Res 2001;27(3):89–95.

    PubMed  CAS  Google Scholar 

  195. Yoshimura R, Chargui J, Aitouche A, Veyron P, Touraine JL. Induction of hyperacute rejection of skin allografts by CD8 + lymphocytes. Transplantation 2000;69(7):1452–1457.

    Article  PubMed  CAS  Google Scholar 

  196. Gardner CR. The pharmacology of immunosuppressant drugs in skin transplant rejection in mice and other rodents. Gen Pharmacol 1995;26(2):245–271.

    Article  PubMed  CAS  Google Scholar 

  197. Tepper MA, Linsley PS, Tritschler D, Esselstyn JM. Tolerance induction by soluble CTLA4 in a mouse skin transplant model. Transplant Proc 1994;26(6):3151–3154.

    PubMed  CAS  Google Scholar 

  198. Sho M, Sandner SE, Najafian N, Salama AD, Dong V, Yamada A, Kishimoto K, Harada H, Schmitt I, Sayegh MH. New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg 2002;236(5):667–675.

    Article  PubMed  Google Scholar 

  199. Rolls HK, Kishimoto K, Dong VM, Illigens BM, Sho M, Sayegh MH, Benichou G, Fedoseyeva EV. T-cell response to cardiac myosin persists in the absence of an alloimmune response in recipients with chronic cardiac allograft rejection. Transplantation 2002;74(7):1053–1057.

    Article  PubMed  CAS  Google Scholar 

  200. Zhai Y, Meng L, Gao F, Busuttil RW, Kupiec-Weglinski JW. Allograft rejection by primed/memory CD8 + T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol 2002;169(8):4667–4673.

    PubMed  CAS  Google Scholar 

  201. Fedoseyeva EV, Kishimoto K, Rolls HK, Illigens BM, Dong VM, Valujskikh A, Heeger PS, Sayegh MH, Benichou G. Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J Immunol 2002;169(3):1168–1174.

    PubMed  CAS  Google Scholar 

  202. Coates PT, Krishnan R, Kireta S, Johnston J, Russ GR. Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther 2001;8(16):1224–1233.

    Article  PubMed  CAS  Google Scholar 

  203. Fahy O, Porte H, Senechal S, Vorng H, McEuen AR, Buckley MG, Walls AF, Wallaert B, Tonnel AB, Tsicopoulos A. Chemokine-induced cutaneous inflammatory cell infiltration in a model of Hu-PBMC-SCID mice grafted with human skin. Am J Pathol 2001;158(3):1053–1063.

    Article  PubMed  CAS  Google Scholar 

  204. Moulton KS, Melder RJ, Dharnidharka VR, Hardin-Young J, Jain RK, Briscoe DM. Angiogenesis in the huPBL-SCID model of human transplant rejection. Transplantation 1999;67(12):1626–1631.

    Article  PubMed  CAS  Google Scholar 

  205. Briscoe DM, Dharnidharka VR, Isaacs C, Downing G, Prosky S, Shaw P, Parenteau NL, Hardin-Young J. The allogeneic response to cultured human skin equivalent in the hu-PBL-SCID mouse model of skin rejection. Transplantation 1999;67(12):1590–1599.

    Article  PubMed  CAS  Google Scholar 

  206. Hammerman MR. Xenotransplantation of renal primordia. Curr Opin Nephrol Hypertens 2002;11(1):11–16.

    Article  PubMed  Google Scholar 

  207. Palmer DB, Lechler R. Can the thymus be a useful tool to induce specific tolerance to xenoantigens? Transplantation 1999;68(11):1628–1630.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kreidberg, J. (2009). Animal Models. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics