Skip to main content

Anti-Atherosclerotic Activity

  • Reference work entry
Drug Discovery and Evaluation
  • 2006 Accesses

Induction of Experimental Atherosclerosis

General Considerations

Experimental atherosclerosis was first successfully induced in rabbits by Saltykow (1908) and Ignatowski (1909). During the following years, various scientists found that dietary cholesterol was the responsible stimulus for development of atherosclerosis . Other species are also susceptible to diet-induced atherosclerosis (Reviews by Kritchevsky 1964; Hadjiinky et al. 1991). Mouse models of atherosclerosis were reviewed by Reardon and Getz (2001) and by Daugherty (2002). Tailleux et al. (2003) underlined the importance of nuclear receptors, e. g., peroxisome proliferators‐activated receptors (PPARs), liver X receptors (LXR) (Joseph and Totonoz 2003; Terasaka et al. 2003) and retinoid receptors (RXR) (Staels 2001; Li et al. 2005), which are implicated in lipid metabolism and inflammation.

References and Further Reading

Daugherty A (2002) Mouse models of atherosclerosis. Am J Med Sci 323:3–10

Hadjiinky P, Bourdillon MC,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 809.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Abe I, Prestwich GD (1998) Development of new cholesterol‐lowering drugs. Drug Dev Today 3:389–390

    Article  Google Scholar 

  • Abe I, Zheng YF, Prestwich GD (1998a) Mechanism based inhibitors and other active-site targeted inhibitors of oxidosqualene cyclase and squalene cyclase. J Enzyme Inhib 13:385–398

    Article  PubMed  CAS  Google Scholar 

  • Abe I, Zheng YF, Prestwich GD (1998b) Photoaffinity labeling of oxidosqualene cyclase and squalene cyclase by a benzophenone‐containing inhibitor. Biochemistry 37:5779–5784

    Article  PubMed  CAS  Google Scholar 

  • Abletshauser C, Klüßendorf D, Schmidt A, Winkler K, März W, Buddecke E, Malmstan M, Siegel G (2002) Biosensing of arteriosclerotic nanoplaque formation and interaction with an HMG CoA reductase inhibitor. Acta Physiol Scand 176:131–145

    Article  PubMed  CAS  Google Scholar 

  • Ahn YS, Smith D, Osada J, Li Z, Schaefer EJ, Ordovas M (1994) Dietary fat saturation affects apolipoprotein gene expression and high density lipoprotein size distribution in golden Syrian hamsters. J Nutr 124:2147–2155

    PubMed  CAS  Google Scholar 

  • Åkerlund JE, Björkhem I (1990) Studies on the regulation of cholesterol 7α-hydroxylase and HMG-CoA reductase in rat liver: effects of lymphatic drainage and ligation of the lymph duct. J Lipid Res 31:2159–2166

    PubMed  Google Scholar 

  • Alberti S, Schuster G, Parini P, Feltkamp D, Diczfalusi U, Rudling M, Angelin B, Björkhem I, Pettersson S, Gustavsson JA (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice. J Clin Invest 107:565–573

    Article  PubMed  CAS  Google Scholar 

  • Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    PubMed  CAS  Google Scholar 

  • Amano Y, Nishimoto T, Tozawa R, Ishikawa E, Imura Y, Sugiyama Y (2003) Lipid-lowering effects of TAK-475, a squalene synthase inhibitor: animal models of familial hypercholesterolemia. Eur J Pharmacol 466:155–161

    Article  PubMed  CAS  Google Scholar 

  • Amin D, Cornell SA, Gustafson DK, Needle SJ, Ullrich JW, Bilder GE, Perrone MH (1992) Biphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis. J Lipid Res 33:1657–1663

    PubMed  CAS  Google Scholar 

  • Amin D, Gustafson SK, Weinacht JM, Cornell SA, Neuenschwander K, Kosmider B, Scotese AC, Regan JR, Perrone MH (1993) RG 12561 (Dalvastatin): A novel synthetic inhibitor of HMG-CoA reductase and cholesterol‐lowering agent. Pharmacology 46:13–22

    Article  PubMed  CAS  Google Scholar 

  • Amin D, Rutledge RZ, Needle SN, Galczenski HF, Neuenschwander K, Scotese AC, Maguire MP, Bush RC, Hele DJ, Bilder GE, Perrone MH (1997) RPR 107393, a potent squalene synthase inhibitor and orally effective cholesterol‐lowering agent: comparison with inhibitors of HMG-CoA reductase. J Pharmacol Exp Ther 281:746–752

    PubMed  CAS  Google Scholar 

  • Amin D, Rutledge RZ, Needle SN, Hele DJ, Neuenschwander K, Bush RC, Bilder GE, Perrone MH (1996) RPR 101821, a new potent cholesterol‐lowering agent: inhibition of squalene synthase and 7-dehydrocholesterol reductase. Naunyn‐Schmiedebergs Arch Pharmacol 353:233–240

    Article  PubMed  CAS  Google Scholar 

  • Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA (2001) Mevastin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 32:980–986

    Article  PubMed  CAS  Google Scholar 

  • Aoki T, Yoshinaka Y, Yamazaki H, Suzuki H, Tamaki T, Sato F, Kitahara M, Saito Y (2002) Triglyceride‐lowering effect of pivastatin in a rat model of postprandial lipemia. Eur J Pharmacol 444:107–113

    Article  PubMed  CAS  Google Scholar 

  • Arimura N, Horiba T, Imagawa M, Shimizu M, Sato R (2004) The peroxisome proliferator‐activated receptor γ regulates expression of the perilipin gene in adipocytes. J Biol Chem 279:10070–10076

    Article  PubMed  CAS  Google Scholar 

  • Asakawa T, Matsushita S (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15:137–140

    Article  CAS  Google Scholar 

  • Assmann G, Shriewer H, Schmitz G, Hägele EO (1983) Quantification of high-density‐lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clin Chem 29:2026–2030

    PubMed  CAS  Google Scholar 

  • Ast M, Frishman WH (1990) Bile acid sequestrants. J Clin Pharmacol 30:99–106

    Article  PubMed  CAS  Google Scholar 

  • Avigan J, Bhathena SJ, Schreiner ME (1975) Control of sterol synthesis and of hydroxymethylglutaryl CoA reductase in skin fibroblasts grown from patients with homozygous type II hyperlipoproteinemia. J Lipid Res 16:151–154

    PubMed  CAS  Google Scholar 

  • Bae S-H, Lee JN, Fitzky BU, Seong J, Paik Y-K (1999) Cholesterol biosynthesis from lanosterol. Molecular cloning, tissue distribution, expression, chromosomal location and regulation of rat 7-dehydrocholesterol reductase, a Smith-Lemli-Opitz syndrome‐related protein. J Biol Chem 274:14624–14631

    Article  PubMed  CAS  Google Scholar 

  • Baetta R, Camera M, Comparato C, Altana C, Ezekowitz MD, Tremoli E (2002) Fluvastatin reduces tissue factor expression and macrophage accumulation in carotid lesions of cholesterol-fed rabbits in the absence of lipid lowering. Arterioscler Thromb Vasc Biol 22:692–698

    Article  PubMed  CAS  Google Scholar 

  • Baker FC, Schooley DA (1979) Analysis and purification of acyl coenzyme A thioesters by reversed-phase ion-pair liquid chromatography. Anal Biochem 94:417–424

    Article  PubMed  CAS  Google Scholar 

  • Balasubramaniam S, Simons LA, Chang S, Roach PD, Nestel PJ (1990) On the mechanism by which an ACAT inhibitor (CL 277,082) influences plasma lipoproteins in the rat. Atherosclerosis 82:1–5

    Article  PubMed  CAS  Google Scholar 

  • Barish GD, Evans RM (2004) PPARs and LXRs: atherosclerosis goes nuclear. Trends Endocrinol Metab 15:158–165

    Article  PubMed  CAS  Google Scholar 

  • Barnhart RL, Busch SJ, Jackson RL (1989) Concentration‐dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation. J Lipid Res 30:1703–1710

    PubMed  CAS  Google Scholar 

  • Baxter A, Fitzgerald BJ, Hutson JL, McCarthy AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ, Wright C (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers cholesterol in vivo. J Biol Chem 267:11705–11708

    PubMed  CAS  Google Scholar 

  • Beck G, Kesseler K, Baader E, Bartmann W, Bergmann A, Granzer E, Jendralla H, von Kerekjarto B, Krause R, Paulus E, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 1. Lactones of pyridine- and pyrimidine‐substituted 3,5-dihydroxy-6-heptenoic (heptanoic) acids. J Med Chem 33:52–60

    Article  PubMed  CAS  Google Scholar 

  • Becker RHA, Wiemer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18 (Suppl 2):S110–S115

    Google Scholar 

  • Beere PA, Glagov S, Zarins ChK (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey. Arterioscl Thrombos 12:1245–1253

    Google Scholar 

  • Beitz J, Mest HJ (1991) A new derivative of tradipil (AR 12456) as a potentially new antiatherosclerotic drug. Cardiovasc Drug Rev 9:385–397

    Article  CAS  Google Scholar 

  • Bell FP, Gammil RB, John LCS (1992) U-73482: A novel ACAT inhibitor that elevates HDL‐cholesterol, lowers plasma triglyceride and facilitates hepatic cholesterol mobilization in the rat. Atherosclerosis 92:115–122

    Article  PubMed  CAS  Google Scholar 

  • Berkenboom G, Unger P, Fontaine J (1989) Atherosclerosis and responses of human isolated coronary arteries to endothelium‐dependent and -independent vasodilators. J Cardiovasc Pharmacol 14, Suppl 11:S35–S39

    Google Scholar 

  • Bernheim F, Bernheim MLC, Wilbur KM (1948) The reaction between thiobarbituric acid and the oxidation products of certain lipids. J Biol Chem 174:257–264

    PubMed  CAS  Google Scholar 

  • Bernini F, Corsini A, Fumagalli R, Paoletti R (1994) Pharmacology of lipoprotein receptors. J Lipid Mediat Cell Signal 9:9–17

    PubMed  CAS  Google Scholar 

  • Berthou L, Duverger N, Emmanuel F, Langouët S, Auwerx J, Guillouzo A, Fruchart JC, Rubin E, Denèfle P, Staels B, Branellec D (1996) Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. J Clin Invest 97:2408–2416

    Article  PubMed  CAS  Google Scholar 

  • Bilheimer DW, Watanabe Y, Kita T (1982) Impaired receptor‐mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci USA 79:3305–3309

    Article  PubMed  CAS  Google Scholar 

  • Biller SA, Forster C, Gordon EM, Harrity T, Rich LC, Marretta J, Ciosek CP (1991a) Isoprenyl phosphinylformates: new inhibitors of squalene synthetase. J Med Chem 34:1912–1914

    Article  PubMed  CAS  Google Scholar 

  • Biller SA, Sofia MJ, DeLange B, Forster C, Gordon EM, Harrity T, Rich LC, Ciosek CP (1991b) The first potent inhibitor of squalene synthase: a profound contribution of an ether oxygen to inhibitor‐enzyme interaction. J Am Chem Soc 113:8522–8524

    Article  CAS  Google Scholar 

  • Björkhem I, Andersson U, Sudjama‐Sugiaman E, Eggertsen G, Hylemon Ph (1993) Studies on the link between HMG-CoA reductase and cholesterol 7α-hydroxylase in lymph-fistula rats: evidence for both transcriptional and post‐transcriptional mechanisms for down‐regulation of the two enzymes by bile acids. J Lipid Res 34:1497–1503

    Google Scholar 

  • Blaton V, Peeters H (1976) The nonhuman primates as models for studying atherosclerosis: Studies on the chimpanzee, the baboon and the rhesus macacus. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 33–64

    Google Scholar 

  • Bocan TMA, Ferguson E, McNally W, Uhlendorf PD, Mueller SB, Dehart P, Sliskovic DR, Roth BD, Krause BR, Newton RS (1992) Hepatic and non hepatic sterol synthesis and tissue distribution of a liver selective HMG-CoA reductase inhibitor, CI-981: comparison with selected HMG-CoA reductase inhibitors. Biochim Biophys Acta 1123:133–144

    Article  PubMed  CAS  Google Scholar 

  • Bocan TMA, Mazur MJ, Mueller SB, Brown EQ, Sliskovic DR, O'Brien PM, Creswell MW, Lee H, Uhlendorf PD, Roth BD, Newton RS (1994) Antiatherosclerotic activity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase in cholesterol-fed rabbits: a biochemical and morphological evaluation. Atherosclerosis 111:127–142

    Article  PubMed  CAS  Google Scholar 

  • Bocan TMA, Mueller SB, Uhlendorf PD, Newton RS, Krause BR (1991) Comparison of CI-976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. Arterioscler Thrombosis 11:1830–1843

    Article  CAS  Google Scholar 

  • Bocan TMA, Muellers BAK, Uhlendorf PD, Quenby-Brown E, Mazur MJ, Black AE (1993) Inhibition of acyl-CoA:cholesterol O-acyl transferase reduces the cholesterol enrichment of atherosclerotic lesions in the Yucatan micropig. Atherosclerosis 99:175–186

    Article  PubMed  CAS  Google Scholar 

  • Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in the aortic lesions of LDL receptor‐deficient mice. J Clin Invest 101:353–345

    Article  PubMed  CAS  Google Scholar 

  • Booth RGF, Martin JF, Honey AC, Hassall DG, Beesley JE, Moncada S (1989) Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis 76:257–268

    Article  PubMed  CAS  Google Scholar 

  • Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1987) Impaired muscarinic endothelium‐dependent relaxation and cyclic guanosine 5′-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79:170–174

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    Article  PubMed  CAS  Google Scholar 

  • Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987) Novel 21-amino steroids as potent inhibitors of iron‐dependent lipid peroxidation. J Biol Chem 262:10438–10440

    PubMed  CAS  Google Scholar 

  • Bravo E, Cantafora A, Calcobrini A, Ortu G (1994) Why prefer the golden Syrian hamster (Mesocricetus auratus) to the Wistar rats in experimental studies on plasma lipoprotein metabolism. Comp Biochim Physiol Vol. 107B: pp 347–355

    Google Scholar 

  • Bretherton KN, Day AJ, Skinner SL (1977) Hypertension-accelerated atherogenesis in cholesterol-fed rabbits. Atherosclerosis 27:79–87

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL, Dietschy JM (1979) Active and inactive forms of 3-hydroxyx-3-methylglutaryl coenzyme A reductase in the liver of the rat. J Biol Chem 254:5144–5149

    PubMed  CAS  Google Scholar 

  • Bruckdorfer KR (1990) Free radicals, lipid peroxidation and atherosclerosis. Curr Opin Lipidol 1:529–535

    Article  Google Scholar 

  • Brun RP, Tontonoz P, Forman B, Ellis R, Chen J, Evans RM, Spiegelman BM (1996) Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 15:974–984

    Article  Google Scholar 

  • Bursill CA, Channon KM, Greaves DC (2004) The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Curr Opin Lipidol 15:145–149

    Article  PubMed  CAS  Google Scholar 

  • Caldwell CT, Suydam DE (1959) Quantitative study of estrogen‐induced atherosclerosis in cockerels. Proc Soc Exp Biol Med 101:299–302

    PubMed  CAS  Google Scholar 

  • Cardin AD, Holdsworth G, Jackson RL (1984) Isolation and characterization of plasma lipoproteins and apolipoproteins. In: Schwartz A (ed) Methods in Pharmacology, Vol 5. Plenum Press, New York and London, pp 141–166

    Google Scholar 

  • Carew TE, Schwenke DC, Steinberg D (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 84:7725–7729

    Article  PubMed  CAS  Google Scholar 

  • Carlson LA, Rössner S (1972) A methodological study of an intravenous fat tolerance test with Intralipid emulsion. Scand J Clin Lab Invest 29:271–280

    Article  PubMed  CAS  Google Scholar 

  • Cattel L, Ceruti M, Balliano G, Viola F, Grosa G, Schuber F (1989) Drug design based on biosynthetic studies: synthesis, biological activity, and kinetics of new inhibitors of 2,3-oxidosqualene cyclase and squalene epoxidase. Steroids 53:363–391

    Article  PubMed  CAS  Google Scholar 

  • Cayen MN, Dvornik D (1979) Effect of diosgenin on lipid metabolism in rats. J Lipid Res 20:162–174

    PubMed  CAS  Google Scholar 

  • Chan C, Andreotti D, Cox B, Dymock BW, Hutson JL, Keeling SE, McCarthy AD, Procopiou PA, Ross BC, Sareen M, Scicinski JJ, Sharatt PJ, Snowden MA, Watson MS (1996) The squalestatins: decarboxy and 4-deoxy analogues as potent squalene synthase inhibitors. J Med Chem 39:207–215

    Article  PubMed  CAS  Google Scholar 

  • Chang CCY, Huh HY, Cadigan KM, Chang TY (1993) Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem 268:20747–20755

    PubMed  CAS  Google Scholar 

  • Chapman KP, Stafford WW, Day CE (1976) Produced by selective breeding of Japanese quail animal model for experimental atherosclerosis. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 347–356

    Google Scholar 

  • Chawla A, Boisvert WA, Lee CH, Laffitte BH, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss KL, Evans RM, Tontonoz P (2001) A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171

    Article  PubMed  CAS  Google Scholar 

  • Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, Han J, Kang H, Evans RM (2003) PPARδ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273

    Article  PubMed  CAS  Google Scholar 

  • Chen HW, Kandutsch AA (1976) Effects of cholesterol derivatives on sterol biosynthesis. In: Day CE (ed) Atherosclerosis Drug Discovery. Plenum Press, New York and London, pp 405–417

    Chapter  Google Scholar 

  • Chen Z, Ishibashi S, Perrey S, Osuga JI, Gotoda T, Kitamine T, Tamura Y, Okazaki H, Yahagi N, Iizuka Y, Shionoiri F, Ohashi K, Harada K, Shimano H, Nagai R, Yamada N (2001) Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice. Pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 21:372–377

    Article  PubMed  CAS  Google Scholar 

  • Chiang JY, Stroup D (1994) Identification and characterization of a putative bile-acid‐responsive element in the cholesterol 7α-hydroxylase gene promoter. J Biol Chem 269:17502–17507

    PubMed  CAS  Google Scholar 

  • Chinetti G, Gbaguidi FG, Griglio S, Mallat Z, Antonucci M, Poulain P, Chapman J, Fruchart JC, Tedgui A, Najib-Fruchart J, Staels B (2000) CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator‐activated receptors. Circulation 101:2411–2417

    Article  PubMed  CAS  Google Scholar 

  • Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, Fruchart JC, Chapman J, Najib J, Staels B (1998) Activation of proliferator‐activated receptors alpha and gamma induces apoptosis of human monocyte‐derived macrophages. J Biol Chem 273:255573–25580

    Article  Google Scholar 

  • Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Pineda Torra I, Teissier E, Minnich A, Jaye M, Duverger N, Brewer HB, Fruchart JC, Clavey V, Staels B (2001) PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–38

    Article  PubMed  CAS  Google Scholar 

  • Chugh A, Ray A, Gupta JB (2003) Squalene epoxidase as hypocholesterolemic drug revisited. Prog Lipid Res 42:37–50

    Article  PubMed  CAS  Google Scholar 

  • Ciosek CP Jr, Magnin DR, Harrity DW, Logan JV, Dickson JK Jr, Gordon EM, Hamilton KA, Jolibois KG, Kunselman LK, Lawrence RM (1993) Lipophilic 1,1-bisphosphonates are potent squalene synthase inhibitors and orally active cholesterol lowering agents in vivo. J Biol Chem 268:24832–24837

    PubMed  CAS  Google Scholar 

  • Clader JW (2004) The discovery of ezetimibe: a view from outside the receptor. J Med Chem 47:1–9

    Article  PubMed  CAS  Google Scholar 

  • Clark SB, Tercyak AM (1984) Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA:cholesterol acyltransferase and normal pancreatic function. J Lipid Res 25:148–159

    PubMed  CAS  Google Scholar 

  • Clarkson TB, Lofland HB (1961) Therapeutic studies on spontaneous arteriosclerosis in pigeons. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 314–317

    Google Scholar 

  • Clinkenbeard KD, Sugiyama T, Reed WD, Lane MD (1975) Cytoplasmatic 3-hydroxy-3-methylglutaryl coenzyme A synthase from liver. Purification, properties, and role in cholesterol synthesis. J Biol Chem 250:3124–3135

    CAS  Google Scholar 

  • Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, Law RE (2001) Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor deficient mice. Atheroscler Thromb Vasc Biol 21:365–371

    Article  CAS  Google Scholar 

  • Corti R, Osende JI, Fallon JT, Fuster V, Mizsei G, Jneid H, Wright SD, Chaplin WF, Badimon JJ (2004) The selective peroxisomal proliferator‐activated receptor-gamma agonist has an additive effect on plaque regression in combination with simvastatin in experimental atherosclerosis. In vivo study by high‐resolution magnetic resonance imaging. J Am Coll Cardiol 43:464–473

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove PG, Gaynor BJ, Harwood HJ (1992) Quantitation of hepatic low density lipoprotein receptor levels in the hamster. FASEB J 4:A533

    Google Scholar 

  • Cosgrove PG, Gaynor BJ, Harwood HJ Jr (1992) Quantitation of hepatic LDL receptor levels in the hamster. FASEB J 4:A533

    Google Scholar 

  • Costet P, Luo Y, Wang N, Tall AR (2000) Sterol dependent activation of the ABC1 promotor by the liver Xrecptor/retinoid X receptor. J Biol Chem 36:28240–28245

    Google Scholar 

  • Crook D, Weisgraber KH, Rall SC Jr, Mahley RW (1990) Isolation and characterization of several plasma apolipoproteins of common marmoset monkey. Arteriosclerosis 10:625–632

    Article  PubMed  CAS  Google Scholar 

  • Curtius HCh, Bürgi W (1966) Gaschromatographische Bestimmung des Serumcholesterins. Z klin Chem klin Biochem 4:38–42

    Google Scholar 

  • D'Costa MA, Smigura FC, Kulhay K, Angel A (1977) Effects of clofibrate on lipid synthesis, storage, and plasma intralipid clearance. J Lab Clin Med 90:823–836

    PubMed  Google Scholar 

  • Daugherty A (2002) Mouse models of atherosclerosis. Am J Med Sci 323:3–10

    Article  PubMed  Google Scholar 

  • Davies MG, Klyachkin ML, Kim JH, Hagen PO (1993) Endothelin and vein bypass grafts in experimental atherosclerosis. J Cardiovasc Pharmacol 22, Suppl 8:S348–S351

    Google Scholar 

  • Day CE (1990) Comparison of hypocholesterolemic activities of the bile acid sequestrants cholestyramine and cholestipol hydrochloride in cholesterol fed sea quail. Artery 17:281–288

    PubMed  CAS  Google Scholar 

  • Day CE, Phillips WA, Schurr PE (1979) Animal models for an integrated approach to the pharmacologic control of atherosclerosis. Artery 5:90–109

    PubMed  CAS  Google Scholar 

  • Day CE, Stafford WW (1975) New animal model for atherosclerosis research. In: Kritchevsky D, Paoletti R, Holmes WL (eds) Lipids, Lipoproteins, and Drugs. Plenum Press, New York, pp 339–347

    Chapter  Google Scholar 

  • Day CE, Stafford WW, Schurr PE (1977) Utility of a selected line (SEA) of the Japanese quail (Coturnix coturnix japonica) for the discovery of new anti‐atherosclerosis drugs. Anim Sci 27:817–821

    CAS  Google Scholar 

  • DeBlasi A, O'Reilly K, Motulsky HY (1989) Calculation receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci 10:227–229

    Article  PubMed  CAS  Google Scholar 

  • DeCampli WM, Kosek JC, Mitchell RS, Handen CE, Miller DC (1988) Effects of aspirin, dipyridamole, and cod liver oil on accelerated myointimal proliferation in canine veno-arterial allografts. Ann Surg 208:746–754

    Article  PubMed  CAS  Google Scholar 

  • Delerive P, Furman C, Teissier E, Fruchart JC, Duriez P, Staels B (2000) Oxidized phospholipids activate PPARα in a phospholipase A2‐dependent manner. FEBS Lett 471:34–38

    Article  PubMed  CAS  Google Scholar 

  • Delsing DJ, Jukema JW, van de Wiel MA, Emeis JJ, van der Laarse A, Havekes LM, Princen HM (2003) Differential effects of amlodipin and atorvastin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice. J Cardiovasc Pharmacol 42:63–70

    Article  PubMed  CAS  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator‐activated receptors: nuclear control of metabolism. Endocrinol Rev 20:649–688

    Article  CAS  Google Scholar 

  • Dietschy JM, Spady DK (1984) Measurement of rates of cholesterol synthesis using tritiated water. J Lipid Res 25:1469–1476

    PubMed  CAS  Google Scholar 

  • Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599

    PubMed  CAS  Google Scholar 

  • Dollis D, Schuber F (1994) Effects of a 2,3-oxidosqualene‐lanosterol cyclase inhibitor 2,3:22,23-dioxidosqualene and 24,25-epoxycholesterol on the regulation of cholesterol biosynthesis in human hepatoma cell line HepG2. Biochem Pharmacol 48:49–57

    Article  PubMed  CAS  Google Scholar 

  • Dresel HA, Deigner HP, Frübis J, Strein K, Schettler G (1990) LDL‐metabolism of the arterial wall – new implications for atherogenesis. Z Kardiol 79: Suppl. 3:9–16

    Google Scholar 

  • Dressel U, Allen TL, Pippal JP, Rohde PR, Lau P, Muscat GEO (2003) The peroxisome proliferator‐activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17:2477–2493

    Article  PubMed  CAS  Google Scholar 

  • Duez H, Chao YS, Hernandez M, Torpier G, Poulain P, Mundt S, Mallat Z, Teissier E, Burton CA, Tedgui A, Fruchart JC, Fiévet C, Wright SD, Staels B (2002) Reduction of atherosclerosis by the peroxisome proliferators‐activated receptor α agonist fenofibrate in mice. J Biol Chem 277:48051–48057

    Article  PubMed  CAS  Google Scholar 

  • Dufresne C, Jones ETT, Omstead MN, Bergstrom JD, Wilsin KE (1996) Novel zaragozic acids from Leptodontidium elatius. J Nat Prod 59:52–54

    Article  CAS  Google Scholar 

  • Duval C, Chinetti G, Trottein F, Fruchart JC, Staels B (2002) The role of PPARs in atherosclerosis. Trends Mol Med 8:422–430

    Article  PubMed  CAS  Google Scholar 

  • Eggen DA, Bhattacharyya AK, Strong JP, Newman III WP, Guzman MA, Restrepo C (1991) Use of serum lipid and apolipoprotein concentrations to predict extent of diet-induced atherosclerotic lesions in aortas and coronary arteries and to demonstrate regression of lesions in individual Rhesus monkeys. Arterioscl Thrombos 11:467–475

    Article  CAS  Google Scholar 

  • Eggstein M, Kreutz FH (1966a) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. I. Mitteilung. Prinzip, Durchführung und Besprechung der Methode. Klin Wschr 44:262–267

    Article  PubMed  CAS  Google Scholar 

  • Eggstein M, Kreutz FH (1966b) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. II. Mitteilung. Zuverlässigkeit der Methode, andere Neutralfettbestimmungen, Normalwerte für Triglyceride und Gycerin im menschlichen Blut. Klin Wschr 44:267–273

    Article  PubMed  CAS  Google Scholar 

  • Einarsson K, Benthin L, Ewerth S, Hellers G, Stwåhlberg D, Angelin B (1989) Studies on acyl-CoA:cholesterol acyltransferase activity in human liver microsomes. J Lipid Res 30:739–746

    PubMed  CAS  Google Scholar 

  • Eisele B, Budzinski R, Müller P, Maier R, Mark M (1997) Effects of a novel 2,3-oxidosqualene cyclase inhibitor on cholesterol biosynthesis and lipid metabolism in vivo. J Lipid Res 38:564–575

    PubMed  CAS  Google Scholar 

  • Esterbauer H, Rotheneder M, Striegl G, Waeg G, Ashy A, Sattler W, Jürgens G (1989) Vitamin E and other lipophilic anti-oxidants protect LDL against oxidation. Fat Sci Technol 91:316–324

    CAS  Google Scholar 

  • Etgen GJ, Mantio N (2003) PPAR ligands for metabolic disorders. Curr Top Med Chem 3:1649–1661

    Article  PubMed  CAS  Google Scholar 

  • Farhy RD, Ho KL, Carretero OA, Scicli AG (1992) Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 182:283–288

    Article  PubMed  CAS  Google Scholar 

  • Fears R, Brown R, Ferres H, Grenier F, Tyrell AWR (1990) Effects of novel bile salts on cholesterol metabolism in rats and guinea-pigs. Biochem Pharmacol 40:2029–2037

    Article  PubMed  CAS  Google Scholar 

  • Fernandez ML (2001) Guinea pigs as model for cholesterol and lipoprotein metabolism. J Nutr 131:10–20

    PubMed  CAS  Google Scholar 

  • Ferré P (2004) The biology of peroxisome proliferator‐activated receptors. Relationship with lipid metabolism and insulin sensitivity. Diabetes 53 [Suppl 1]:S43–S50

    Google Scholar 

  • Field FJ, Albright E, Mathur S (1991) Inhibition of acylcoenzyme A:cholesterol acyltransferase by PD 128042: effect on cholesterol metabolism and secretion in CaCo-2 cells. Lipids 26:1–8

    Article  PubMed  CAS  Google Scholar 

  • Field FJ, Salome RG (1982) Effect of dietary fat saturation, cholesterol and cholestyramine on acyl CoA:cholesterol acyltransferase activity in rabbit intestinal microsomes. Biochim Biophys Acta 712:557–570

    Article  PubMed  CAS  Google Scholar 

  • Fillios LC, Andrus StB, Mann GV, Stare FJ (1956) Experimental production of gross atherosclerosis in the rat. J Exper Med 104:539–552

    Google Scholar 

  • Finta KM, Fischer MJ, Lee L, Gordon D, Pitt B, Webb RC (1993) Ramipril prevents impaired endothelium‐dependent relaxation in arteries from rabbits fed an atherogenic diet. Atherosclerosis 100:149–156

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein-Grün, Frey M, Thimm F, Fleckenstein A (1992) Protective effects of various calcium antagonists against experimental arteriosclerosis. J Human Hypertens 6, Suppl 1:S13–S18

    Google Scholar 

  • Flint OP, Masters BA, Gregg RE, Durham SK (1997) Inhibition of cholesterol synthesis by squalene synthase inhibitors does not induce myotoxicity in vitro. Toxicol Appl Pharmacol 145:91–98

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator‐activated receptors. Proc Natl Acad Sci USA 94:4312–4317

    Article  PubMed  CAS  Google Scholar 

  • Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann D, Noonan DJ, Burke LT, McMorris T, Lamph WW, Evans RM, Weinberger C (1995b) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81:687–693

    Article  PubMed  CAS  Google Scholar 

  • Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman PM, Evans RM (1995) 15-Deoxy-δ 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83:803–812

    Article  PubMed  CAS  Google Scholar 

  • Francis GA, Annicotte JS, Auwerx J (2003) PPAR agonists in the treatment of atherosclerosis. Curr Opin Pharmacol 3:186–191

    Article  PubMed  CAS  Google Scholar 

  • Francis GA, Knopp RH, Oram JF (1995) Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-1 in Tangier disease. J Clin Invest 96:78–87

    Article  PubMed  CAS  Google Scholar 

  • Frantz ID, Hinkelman BT (1955) Acceleration of hepatic cholesterol synthesis by Triton WR-1339. J Exp Med 101:225–232

    Article  PubMed  CAS  Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of low-density lipoprotein cholesterol in plasma, without use of the preparative centrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  • Fronek K (1990) Calcium antagonists and experimental atherosclerosis. Cardiovasc Drug Rev 8:229–237

    Article  CAS  Google Scholar 

  • Fu T, Kashireddy P, Borensztajn J (2003) The peroxisome-proliferator‐activated receptor α agonist ciprofibrate severely aggravates hypercholesterolaemia and accelerates the development of atherosclerosis in mice lacking apolipoprotein E. Biochem J 373:941–947

    Article  PubMed  CAS  Google Scholar 

  • Fukushima H, Aono S, Nakamura Y, Endo M, Imai T (1969) The effect of N-(α-methylbenzyl)linoleamide on cholesterol metabolism in rats. J Atheroscler Res 10:403–414

    Article  PubMed  CAS  Google Scholar 

  • Fukushima H, Nakatani H (1969) Cholesterol‐lowering effects of DL-N-(α-methylbenzyl)-linoleamide and its optically active isomers in cholesterol-fed animals. J Atheroscler Res 9:65–71

    Article  PubMed  CAS  Google Scholar 

  • Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71:173–183

    Article  PubMed  CAS  Google Scholar 

  • Gallo LL, Wadsworth JA, Vahouny GV (1987) Normal cholesterol absorption in rats deficient in intestinal acyl co-enzyme A:cholesterol acyltransferase activity. J Lipid Res 28:381–387

    PubMed  CAS  Google Scholar 

  • Garattini S, Paoletti P, Paoletti R (1958) The effect of diphenylethylacetic acid on cholesterol and fatty acid biosynthesis. Arch Int Pharmacodyn 117:114–122

    PubMed  CAS  Google Scholar 

  • Garattini S, Paoletti R, Bizzi L, Grossi E, Vertua R (1961) A comparative evaluation of hypocholesteremizing drugs on several tests. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 144–157

    Google Scholar 

  • Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML (2003) Liver peroxisome proliferator‐activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278:34268–34276

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt R (1993) Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes. Lipids 28:613–619

    Article  PubMed  CAS  Google Scholar 

  • Gerst N, Schuber F, Viola F, Cattel L (1986) Inhibition of cholesterol biosynthesis in 3T3 fibroblasts by 2-aza-2,3-dihydrosqualene, a rationally designed 2,3-oxidosqualene cyclase inhibitor. Biochem Pharmacol 35:4243–4250

    Article  PubMed  CAS  Google Scholar 

  • Getz GS (1990) The involvement of lipoproteins in atherogenesis: evolving concepts. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:17–28

    Article  PubMed  CAS  Google Scholar 

  • Ghirlanda G, Oradei A, Manto A, Lippa S, Uccioli L, Caputo S, Greco AV, Littarru GP (1993) Evidence of plasma CoQ10-lowering effect by HMG-CoA reductase inhibitors. A double-blind, placebo‐controlled study. J Clin Pharmacol 33:226–229

    Article  PubMed  CAS  Google Scholar 

  • Gillies PJ, Robinson CS, Rathgeb KA (1990) Regulation of ACAT activity by a cholesterol substrate pool during the progression and regression phases of atherosclerosis: implications for drug discovery. Atherosclerosis 83:177–185

    Article  PubMed  CAS  Google Scholar 

  • Goetze S, Xi XP, Kawano H, Gotlibowski T, Fleck E, Hsueh WA, Law RE (1999) PPAR gamma ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 33:798–806

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Basu SK, Brown MS (1983) Receptor mediated endocytosis of LDL in cultured cells. Meth Enzymol 98:241–260

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of mevalonate pathway. Nature 343:425–430

    Article  PubMed  CAS  Google Scholar 

  • Gotoda T, Yamada N, Kawamura M, Kozaki K, Mori N, Ishibashi S, Shimano H, Takaku F, Yazaki Y, Furuichi Y, Murase T (1991) Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency. J Clin Invest 88:1856–1864

    Article  PubMed  CAS  Google Scholar 

  • Gotteland JP, Loubat C, Planty B, Junquero D, Delhon A, Halazy S (1998) Sulfonamide derivatives of benzylamine block cholesterol biosynthesis in HepG-2 cells: a new type of squalene epoxidase inhibitors. Bioorg Med Chem Lett 8:1337–1342

    Article  PubMed  CAS  Google Scholar 

  • Gotto AM (1990) Pravastatin: A hydrophilic inhibitor of cholesterol synthesis. J Drug Dev 3:155–161

    Google Scholar 

  • Graham DJ, Staffa JA, Shatin D, Andrade SE, Schech SD, Grenade LL, Gurwitz JH, Chan KA, Goodman MJ, Platt R (2004) Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. J Am Med Assoc 2992:2585–2590

    Article  Google Scholar 

  • Grayson NA, Westkaemper RB (1988) Stable analogs of acyl adenylates. Inhibition of acetyl- and acyl-CoA synthetase by adenosine 5′-alkylphosphates. Life Sci 43:437–444

    Article  PubMed  CAS  Google Scholar 

  • Greenspan MD, Yudkovitz JB, Chen JS, Hanf DP, Chang MN, Chiang PYC, Chabala JC, Alberts AW (1989) The inhibition of cytoplasmatic acetoacetyl-CoA thiolase by a triyne carbonate (L-660,631). Biochem Biophys Res Commun 163:548–553

    Article  PubMed  CAS  Google Scholar 

  • Greenspan MD, Yudkowitz JB, Lo CYL, Chen JS, Alberts AW, Hunt VM, Chang MN, Yang SS, Thompson KL, Chiang YCP, Chabala JC, Monaghan RL, Schwartz RL (1987) Inhibition of hydroxymethylglutaryl‐coenzyme A synthase by L-659,699. Proc Natl Acad Sci USA 84:7488–7492

    Article  PubMed  CAS  Google Scholar 

  • Grieveson LA, Ono T, Sakakibara J, Derrick JP, Dickinson JM, McMahon A, Higson SPJ (1997) A simplified squalene epoxidase assay based on an HPCL separation and time‐dependent UV/visible determination of squalene. Anal Biochem 252:19–23

    Article  PubMed  CAS  Google Scholar 

  • Groot PH, van Vlijmen BJ, Benson GM, Hofker MH, Schiffelers R, Vidgeon-Hart M, Haveskes LM (1996) Quantitative assessment of aortic atherosclerosis in APOE*3 Leiden transgenic mice and its relationship to serum cholesterol exposure. Arterioscler Thromb Vasc Biol 16:926–933

    Article  PubMed  CAS  Google Scholar 

  • Groves PH, Levis MJ, Cheadle HA, Penny WJ (1993) SIN-1 reduces platelet adhesion and thrombus formation in a porcine model of balloon angioplasty. Circulation 87:590–597

    Article  PubMed  CAS  Google Scholar 

  • Ha Y-C, Barter PJ (1982) Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species. Comp Biochem Physiol Vol 71B:265–269

    CAS  Google Scholar 

  • Ha Y-C, Barter PJ (1986) Effects of sucrose feeding and injection of lipid transfer protein on rat plasma lipoproteins. Comp Biochem Physiol B 83:463–466

    PubMed  CAS  Google Scholar 

  • Ha YC, Barter PJ (1985) Rapid separation of plasma lipoproteins by gel permeation chromatography on agarose gel Superose 6B. J Chromatogr 341:154–159

    PubMed  CAS  Google Scholar 

  • Hadjiinky P, Bourdillon MC, Grosgogeat Y (1991) Modèles expérimentaux d'athérosclérose. Apports, limites et perspectives. Arch Mal Ceut Vaiss 84:1593–1603

    Google Scholar 

  • Harada K, Shimano H, Ishibashi S, Yamada N (1996) Transgenic mouse and gene therapy. Diabetes 45 (Suppl 3): S129–S132

    Google Scholar 

  • Harnett KM, Walsh CT, Zhang L (1989) Effects of Bay o 2752, a hypocholesterolemic agent, on intestinal taurocholate absorption and cholesterol esterification. J Pharm Exp Ther 251:502–509

    CAS  Google Scholar 

  • Harris GH, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Goklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE (1995) Isolation, structure determination and squalene synthase activity of L-731,120 and L-731,128, alkyl citrate analogs of zaragozic acids A and B. Bioorg Med Chem Lett 5:2403–2408

    Article  CAS  Google Scholar 

  • Harris M, Davis W, Brown WV (2003) Ezetimibe. Drugs Today (Barc) 39:229–247

    Article  CAS  Google Scholar 

  • Harris NV, Smith C, Ashton MJ, Bridge AW, Bush RC, Coffee ECJ, Dron DI, Harper MF, Lythgoe DJ, Newton CG, Riddell D (1992) Acyl-CoA:cholesterol O-acyl transferase (ACAT) inhibitors. 1. 2-(Alkylthio)-4,5-diphenyl-1H-imidazoles as potent inhibitors of ACAT. J Med Chem 35:4384–4392

    Article  PubMed  CAS  Google Scholar 

  • Harwood HJ, Chandler CE, Pellarin LD, Bangerter FW, Wilkins RW, Long CA, Cosgrove PG, Malinow MR, Marzetta CA, Pettini JK, Savoy YE, Mayne JT (1993) Pharmacologic consequences of cholesterol absorption inhibition: alteration in cholesterol metabolism and reduction in plasma cholesterol concentration induced by the synthetic saponin β-tigogenin cellobioside (CP-88818; tiqueside). J Lipid Res 34:377–395

    PubMed  CAS  Google Scholar 

  • Harwood HJ, Schneider M, Stacpoole PW (1984) Measurement of human leukocyte microsomal HMG-CoA reductase activity. J Lipid Res 25:967–978

    PubMed  CAS  Google Scholar 

  • Hasty AH, Shimano H, Osuga J, Namatama I, Takahashi A, Yahagi N, Perrey S, Iizuka Y, Tamura Y, Amemiya-Kudo M, Yoshikawa T, Okazaki H, Harada K, Matsuzaka T, Sone H, Gotoda T, Nagai R, Ishibashi S, Yamda N (2001) Severe hypercholesterolemia, hypertriglyceridemia and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J Biol Chem 276:37402–37408

    Article  PubMed  CAS  Google Scholar 

  • Hatch FT, Lees RS (1968) Practical methods for plasma lipoprotein analysis. In: Paoletti R, Kritchevsky D (eds) Advances in Lipid Research, Vol 6, pp 1–68, Academic Press, New York

    Google Scholar 

  • Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Heffron F, Middleton B, White DA (1990) Inhibition of acyl coenzyme A:cholesterol acyl transferase by trimethylcyclohexanylmandelate (Cyclandelate). Biochem Pharmacol 39:575–580

    Article  PubMed  CAS  Google Scholar 

  • Heider JG, Pickens CE, Kelly LA (1983) Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57–118 in the rabbit. J Lipid Res 24:1127–1134

    PubMed  CAS  Google Scholar 

  • Helgerud P, Saarem K, Norum KR (1981) Acyl-CoA:cholesterol acyltransferase in human small intestine: its activity and some properties of the enzymic reaction. J Lipid Res 22:271–277

    PubMed  CAS  Google Scholar 

  • Heller RA, Gould RG (1973) Solubilization and partial purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochem Biophys Res Commun 50:859–865

    Article  PubMed  CAS  Google Scholar 

  • Henry PD, Bentley KI (1981) Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Invest 68:1366–1369

    Article  PubMed  CAS  Google Scholar 

  • Herling AW, Burger HJ, Schubert G, Hemmerle H, Schäfer HL, Kramer W (1999) Alteration of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. Eur J Pharmacol 386:75–82

    Article  PubMed  CAS  Google Scholar 

  • Hidaka Y, Hotta H, Nagata Y, Iwasawa Y, Horie M, Kamei T (1991) Effect of a novel squalene epoxidase inhibitor, NB-598, on the regulation of cholesterol metabolism in HEP G2 cells. J Biol Chem 266:13171–13177

    PubMed  CAS  Google Scholar 

  • Hidaka Y, Sato T, Kamei T (1990) Regulation of squalene epoxidase in HepG2 cells. J Lipid Res 31:2087–2094

    PubMed  CAS  Google Scholar 

  • Hiyoshi H, Yanagimachi M, Ito M, Ohtsuka I, Yoshida I, Saeki T, Tanaka H (2000) Effect of ER-27856, a novel squalene synthase inhibitor, on plasma cholesterol in monkeys: comparison with 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors. J Lipid Res 41:1136–1144

    PubMed  CAS  Google Scholar 

  • Hiyoshi H, Yanagimachi M, Ito M, Yasuda N, Okada T, Ikuda H, Shinmyo D, Tanaka K, Kuruso Y, Yoshida I, Saeki T, Tanaka H (2003) Squalene synthase inhibitors suppress triglyceride biosynthesis through the farnesol pathway in hepatocytes. J Lipid Res 44:128–135

    Article  PubMed  CAS  Google Scholar 

  • Hodgekinson CP, Ye S (2003) Microarray analysis of peroxisome proliferator‐activated receptor γ-induced changes in gene expression in macrophages. Biochem Biophys Res Commun 308:505–510

    Article  CAS  Google Scholar 

  • Hoerer S, Schmid A, Keckel A, Budzinski RM, Nar H (2003) Crystal structure of the human liver X receptor βligand binding domain in complex with a synthetic agonist. J Mol Biol 344:853–861

    Article  CAS  Google Scholar 

  • Hollander W, Prusty S, Nagraj S, Kirkpatrick B, Paddock J, Colombo M (1978) Comparative effects of cetaben (PHB) and dichlormethylene diphosphonate (Cl2MDP) on the development of atherosclerosis in the cynomolgus monkey. Atherosclerosis 31:307–325

    Article  PubMed  CAS  Google Scholar 

  • Holmes WL (1964) Drugs affecting lipid synthesis. In: Paoletti R (ed) Lipid Pharmacology. Academic Press, New York, London, chapter 3, pp 131–184

    Google Scholar 

  • Holub WR, Galli FA (1972) Automated direct method for measurement of serum cholesterol, with use of primary standards and a stable reagent. Clin Chem 18:239–243

    PubMed  CAS  Google Scholar 

  • Horie M, Sawasaki Y, Fukuzumi H, Watanabe K, Iuzuka Y, Tsuchiya Y, Kamei T (1991) Hypolipidemic effects of NB-598 in dogs. Atherosclerosis 88:183–192

    Article  PubMed  CAS  Google Scholar 

  • Horie M, Tsuchiya Y, Hayashi M, Iida Y, Iwasawa Y, Nagata Y, Sawasaki Y, Fukuzumi H, Kitani K, Kamei T (1990) NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem 265:18075–18078

    PubMed  CAS  Google Scholar 

  • Howard AN (1976) The baboon in atherosclerosis research: Comyparison with other species and use in testing drugs affecting lipid metabolism. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 77–87

    Google Scholar 

  • Hsu MH, Palmer CN, Griffin KJ, Johnson EF (1995) A single amino acid change in the mouse peroxisome proliferator‐activated receptor alpha alters transcriptional responses to peroxisome proliferators. Mol Pharmacol 48:559–567

    PubMed  CAS  Google Scholar 

  • Huettinger M, Herrmann M, Goldenberg H, Granzer E, Leineweber M (1993) Hypolipidemic activity of HOE-402 is mediated by stimulation of the LDL receptor pathway. Atheroscl Thromb 13:1005–1012

    Article  CAS  Google Scholar 

  • Huettinger M, Schneider WJ, Ho YK, Goldstein JL, Brown M (1984) Use of monoclonal anti-receptor antibodies to probe the expression of the low density lipoprotein receptor in tissues of normal and Watanabe heritable hyperlipidemic rabbits. J Clin Invest 74:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Huff MW, Telford DE, Edwards JY, Burnett JR, Barrett HP, Rapp SR, Napawan N, Keller BT (2002) Inhibition of the apical sodium‐dependent bile acid transporter reduced LDL cholesterol and apoB by enhanced plasma clearance of LDL apoB. Arterioscler Thromb Vasc Biol 22:1884–1891

    Article  PubMed  CAS  Google Scholar 

  • Hussain MM, Fatma S, Pan X, Iqbal J (2005) Intestinal lipoprotein assembly. Curr Opin Lipidol 16:281–285

    Article  PubMed  CAS  Google Scholar 

  • Hussain MM, Strickland DK, Bakillah A (1999) The mammalian low-density lipoprotein receptor family. Annu Rev Nutr 19:141–172

    Article  PubMed  CAS  Google Scholar 

  • Hylemon PB, Stude EJ, Pandak WM, Heuman DM, Vlahcevic ZR, Chinag JYL (1989) Simultaneous measurement of cholesterol 7α-hydroxylase activity by reverse-phase high‐performance liquid chromatography using both endogenous cholesterol and exogenous [4-14C]cholesterol as substrate. Anal Biochem 182:212–216

    Article  PubMed  CAS  Google Scholar 

  • Ignatowski A (1909) Über die Wirkung des tierischen Eiweißes auf die Aorta und die parenchymatösen Organe der Kaninchen. Virchow's Arch Pathol Anat Physiol 198:248–270

    Article  Google Scholar 

  • Ikeda Y, Young LH, Lefer AM (2003) Rosuvastin, a new HMG-CoA reductase inhibitor, protects ischemic reperfused myocardium in normocholesterolemic rats. J Cardiovasc Pharmacol 41:649–656

    Article  PubMed  CAS  Google Scholar 

  • Illingworth DR (1987) Lipid-lowering drugs. An overview of indications and optimum therapeutic use. Drugs 33:259–279

    Article  PubMed  CAS  Google Scholar 

  • Ingebritson GS, Gibson MD (1981) Assay of enzymes that modulate S-3-hydroxy-3-methylglutaryl coenzyme A reductase by reversible phosphorylation. Meth Enzymol 71:486

    Article  Google Scholar 

  • Inoue Y, Goto H, Horinuki R, Kimura Y, Toda T (1990) Experimental atherosclerosis in the rat carotid artery induced by balloon de‐endothelialization and hyperlipemia. A histological and biochemical study. J Jpn Atheroscler Soc 18:1147–1154

    CAS  Google Scholar 

  • Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor‐negative mice. J Clin Invest 93:1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Ishihara T, Kakuta H, Moritani H, Ugawa T, Sakamoto S, Tsukamoto S, Yanagishawa I (2003) Syntheses and biological evaluation of novel quinuclidine derivatives as squalene synthase inhibitors. Bioorg Med Chem 11:2403–2414

    Article  PubMed  CAS  Google Scholar 

  • Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makashima M, Shimomura I (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenetic factor, by nuclear receptors. Diabetes 52:1655–1663

    Article  PubMed  CAS  Google Scholar 

  • Jackson CL, Bush RC, Bowyer DE (1988) Inhibitory effects of calcium antagonists on balloon catheter‐induced arterial smooth muscle cell proliferation and lesion size. Atherosclerosis 69:115–122

    Article  PubMed  CAS  Google Scholar 

  • Jacobsson L (1987) Influence of clofibrate on the plasma lipoprotein pattern and on lipid content and protein and collagen synthesis in atherosclerotic coronary arteries and abdominal aorta from hypercholesterolemic mini-pigs. Atherosclerosis 63:173–180

    Article  PubMed  CAS  Google Scholar 

  • Jacobsson L, Lundholm L (1982) Experimental atherosclerosis in hypercholesterolemic mini-pigs. Atherosclerosis 45:129–148

    Article  PubMed  CAS  Google Scholar 

  • Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ (1999) Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc Natl Acad Sci USA 96:266–271

    Article  PubMed  CAS  Google Scholar 

  • Jayakody L, Kappagoda T, Senaratne MPJ, Thomson ABR (1988) Impairment of endothelium‐dependent relaxation: an early marker for atherosclerosis in the rabbit. Br J Pharmacol 94:335–346

    Article  PubMed  CAS  Google Scholar 

  • Jaye M (2003) LXR agonists for the treatment of atherosclerosis. Curr Opin Invest Drugs 4:1053–1058

    CAS  Google Scholar 

  • Jendralla H, Baader E, Bartmann W, Beck G, Bergmann A, Granzer E, v. Kerekjarto B, Kesseler K, Krause R, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 2. Derivatives of 7-(1H-pyrrol-3-yl)-substituted-3,5-dihydroxyhept-6(E)-enoic(-heptanoic) acids. J Med Chem 33:61–70

    Article  PubMed  CAS  Google Scholar 

  • Johns W, Bates T (1969) Quantification of the binding tendencies of cholestyramine I: Effect of structure and added electrolytes on the binding of unconjugated and conjugated bile salt anions. J Pharmacol Sci 58:179–183

    Article  CAS  Google Scholar 

  • Johnston TP, Nguyen LB, Chu WA, Shefer S (2001) Potency of selected statin drugs in a new mouse model of hyperlipidemia and atherosclerosis. Int J Pharm 229:75–86

    Article  PubMed  CAS  Google Scholar 

  • Jones SP, Gibson MF, Rimmer DM, Gibson TM, Sharp BR, Lefer DJ (2002) Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor. J Am Coll Cardiol 40:1172–1178

    Article  PubMed  CAS  Google Scholar 

  • Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GH, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 99:7604–7609

    Article  PubMed  CAS  Google Scholar 

  • Joseph SB, Totonoz P (2003) LXRs: new therapeutic targets in atherosclerosis? Curr Opin Pharmacol 3:192–197

    Google Scholar 

  • Jungnickel PW, Cantral KA, Maloley PA (1992) Pravastin: A new drug for the treatment of hypercholesterinemia. Clin Pharm 11:677–689

    PubMed  CAS  Google Scholar 

  • Junker LH, Story JA (1985) An improved assay for cholesterol 7α-hydroxylase activity using phospholipid liposome‐solubilized substrate. Lipids 20:712–718

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G (1989) Modified serum lipoproteins and atherosclerosis. Ann Rep Med Chem 25:169–176

    Article  Google Scholar 

  • Kano H, Hayashi T, Sumi D, Esaki T, Asai Y, Thakur NK, Jayachandran M, Iguchi A (1999) A HMG-CoA reductase inhibitor improved regression of atherosclerosis in the rabbit aorta without affecting serum lipid levels: possible relevance of up‐regulation of endothelial NO synthase mRNA. Biochem Biophys Res Commun 259:414–419

    Article  PubMed  CAS  Google Scholar 

  • Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) The effect of lovastatin on the secretion of very low density lipoprotein lipids and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104:147–152

    Article  PubMed  CAS  Google Scholar 

  • Kawata M, Lee KT, Makiat T (1990) Detection of regenerating cells in the aorta after ballooning by immunocytochemical demonstration of the thymidine analogue 5-bromo-2′-deoxyuridine (BrUdR). In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:514–516

    Article  Google Scholar 

  • Keller AJ, Correll JW, Ladd AT (1951) Sustained hyperlipemia induced in rabbits by means of intravenous injected surface‐active agents. J Exp Med 93:373–384

    Article  Google Scholar 

  • Keller G, Kennedy M, Papyannopoulou T, Wiles MV (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13:473–486

    PubMed  CAS  Google Scholar 

  • Kelm M, Dahmann R, Wink D, Feelisch M (1997) The nitric oxide/superoxide assay. J Biol Chem 272:9922–9932

    Article  PubMed  CAS  Google Scholar 

  • Kersten S (2002) Peroxisome proliferator activated receptors and obesity. Eur J Pharmacol 440:223–234

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  PubMed  CAS  Google Scholar 

  • Keul J, Linnet N, Eschenbruch E (1968) The photometric autotitration of free fatty acids. Z Klin Chem Klin Biochem 6:394–398

    PubMed  CAS  Google Scholar 

  • Kihara K, Toda H, Mori M, Hashimoto M, Mizogami S (1988) The bile acid binding and hypocholesterolemic activity of anion-exchange resins bearing the imidazolium salt group. Eur J Med Chem 23:411–415

    Article  CAS  Google Scholar 

  • Kita T (1991) Oxidized lipoproteins and probucol. Curr Opin Lipidol 2:35–38

    Article  CAS  Google Scholar 

  • Kita T, Brown MS, Bilheimer DW, Goldstein JL (1982) Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc Natl Acad Sci USA 79:5693–5697

    Article  PubMed  CAS  Google Scholar 

  • Kita T, Brown MS, Watanabe Y, Goldstein JL (1981) Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci USA 78:2268–2272

    Article  PubMed  CAS  Google Scholar 

  • Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai Ch (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 84:5928–5931

    Google Scholar 

  • Kita T, Yokode M, Ishii K, Arai H, Nagano Y (1990) The role of atherogenic low density lipoproteins (LDL) in the pathogenesis of atherosclerosis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:188–193

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen K, Stender S (1989) Calcium antagonists and experimental atherosclerosis. Proc Soc Exp Biol Med 190:219–228

    PubMed  CAS  Google Scholar 

  • Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, Umesono K, Evans RM (1994) Differential expression and activation of a family of murine peroxisome receptor‐activated receptors. Proc Natl Acad Sci USA 91:7355–7359

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome signalling pathways through heterodimer formation of their receptors. Nature 358:771–774

    Article  PubMed  CAS  Google Scholar 

  • Klotz U (2003) Pharmacological comparison of the statins. Arzn Forsch/Drug Res 53:605–611

    CAS  Google Scholar 

  • Knorr AM, Kazda S (1990) Influence of nifedipine on experimental arteriosclerosis. Cardiovasc Drugs Ther 4:1027–1032

    Article  PubMed  Google Scholar 

  • Koga S, Horwitz DL, Scanu AM (1969) Isolation and properties of lipoproteins from normal rat serum. J Lipid Res 10:577–588

    PubMed  CAS  Google Scholar 

  • Koga T, Shimada Y, Kuroda M, Tsujita Y, Hasegawa K, Yamazaki M (1990) Tissue‐selective inhibition of cholesterol synthesis in vivo by pravastin sodium, a 3-hydroxy-3-methylglutaryl‐coenzym A reductase inhibitor. Biochim Biophys Acta 1045:115–120

    Article  PubMed  CAS  Google Scholar 

  • Kota BP, Huang THW, Roufogalis BD (2005) An overwiew on biological mechanisms of PPARs. Pharmacol Res 51:85–94

    Article  PubMed  CAS  Google Scholar 

  • Kovanen PT, Pentikäinen MO (2003) Pharmacological evidence for a role of liver X receptors in atheroprotection. FEBS Lett 536:3–5

    Article  PubMed  CAS  Google Scholar 

  • Kowala MC, Nunnari JJ, Durham SK, Nicolosi RJ (1991) Doxazin and cholestyramine similarly decrease fatty streak formation in the aortic arch of hyperlipidemic hamsters. Atherosclerosis 91:35–49

    Article  PubMed  CAS  Google Scholar 

  • Kramer W, Wess G, Enhsen A, Bock K, Falk E, Hoffmann A, Neckermann G, Gantz D, Schulz S, Nickau B, Petzinger E, Turley S, Dietschy JM (1994) Bile acid derived HMG-CoA reductase inhibitors. Biochim Biophys Acta 1227:137–154

    Article  PubMed  Google Scholar 

  • Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid‐regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J Lipid Res 34:279–294

    PubMed  CAS  Google Scholar 

  • Krause BR, Black A, Bousley R, Essenburg A, Cornicelli J, Holmes A, Homan R, Kieft K, Sekere C, Shaw-Hes MK, Stanfield R. Trivedi B, Woolf T (1993b) Divergent pharmacological activities of PD 132301–2 and CL 277,082, urea inhibitors of acyl-CoA:cholesterol acyltransferase. J Pharm Exp Ther 267:734–743

    CAS  Google Scholar 

  • Krause BR, Newton SB (1995) Lipid-lowering activity of atorvastatin and lovostatin in rodent species: triglyceride‐lowering in rats correlates with efficacy in LDL animals. Atherosclerosis 117:237–244

    Article  PubMed  CAS  Google Scholar 

  • Krause BR, Sloop CH, Castle CK, Roheim PS (1981) Mesenteric lymph apolipoproteins in control and ethinyl estradiol‐treated rats: a model for studying apolipoproteins from intestinal origin. J Lipid Res 22:610–619

    PubMed  CAS  Google Scholar 

  • Krause R, Neubauer H, Leven M, Kesseler K (1990) Inhibition of cholesterol synthesis in target tissues and extrahepatic organs after administration of HMG-CoA reductase inhibitors in normolipidaemic rats: organ selectivity and time course of the inhibition. J Drug Dev 3 (Suppl 1):255–257

    Google Scholar 

  • Kris-Etheron PM, Dietschy J (1997) Design criteria for studies examining individual fatty acid effects on cardiovascular diseases risk factors: human and animal studies. Am J Clin Nutr 65 Suppl:1590S–1596S

    Google Scholar 

  • Kritchevsky D (1964) Animal techniques for evaluating hypocholesteremic drugs. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 193–198

    Google Scholar 

  • Kritchevsky D (1964) Experimental Atherosclerosis. In: Paoletti R (ed) Lipid Pharmacology. Academic Press, New York, London, Chapter 2, pp 63–130

    Google Scholar 

  • Kritchevsky D, Tepper SA, Davidson LM, Fisher EA, Klurfeld DM (1989) Experimental atherosclerosis in rabbits fed cholesterol-free diets. 13. Interactions of protein and fat. Atherosclerosis 75:123–127

    Article  PubMed  CAS  Google Scholar 

  • Kubo M, Strott CA (1987) Differential activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase in zones of the adrenal cortex. Endocrinol 120:214–221

    Article  CAS  Google Scholar 

  • Kumai T, Oonuma S, Matsumoto N, Takeba Y, Taniguchi R, Kamio K, Miyazu O, Koitabashi Y, Sekine S, Tadokoro M, Kobayashi S (2004) Anti-lipid deposition effect of HMG-CoA reductase inhibitor, pitavastin, in a rat model of hypertension and hypercholesterolemia. Life Sci 74:2129–2142

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha RS, Lewis DS, Dee Carey K, McGill Jr HC (1991) Effects of estrogen and progesterone on plasma lipoproteins and experimental atherosclerosis in the baboon (Papio sp.) Arterioscl Thrombos 11:23–31

    Google Scholar 

  • Largis EE, Wang CH, DeVries VG, Schaffer SA (1989) CL 277,082: a novel inhibitor of ACAT‐catalyzed cholesterol esterification and cholesterol absorption. J Lipid Res 30:681–690

    PubMed  CAS  Google Scholar 

  • Laufs U, Gertz K, Dirnagl U, Böhm M, Nickenig G, Endres M (2002) Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice. Brain Res 942:23–30

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JW, Kroll DJ, Eacho PI (2000) Ligand‐dependent interaction of hepatic acid-binding protein with the nucleus. J Lipid Res 41:1390–1401

    PubMed  CAS  Google Scholar 

  • Lawrence JW, Li Y, Chen S, DeLuca JG, Berger JP, Umbenhauer DR, Moller DE, Zhou G (2001) Differential gene regulation in human versus rodent hepatocytes by peroxisome proliferator‐activated receptor (PPAR)α. J Biol Chem 276:31521–31527

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Evans RM (2002) Peroxisome proliferator‐activated receptor-γ in macrophage lipid homeostasis. Trends Endocr Metab 13:331–335

    Article  CAS  Google Scholar 

  • Lee RG, Kelly KL, Sawyer JK et al (2004) Plasma cholestery ester provided by lecithin: cholesterol acyltransferase and acyl-coenzyme a: cholesterol acyltransferase 2 have opposite atherosclerotic potential. Circ Res 95:998–1004

    Article  PubMed  CAS  Google Scholar 

  • Lee SST, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, Fernadez‐Salguero PM, Westphal H, Gonzalez FJ (1995) Targeted disruption of the α isoform of the peroxisome proliferator‐activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol 15:3012–3022

    PubMed  CAS  Google Scholar 

  • Leo C, Chen JD (2000) The SRC family of nuclear receptor coactivators. Gene 245:1–11

    Article  PubMed  CAS  Google Scholar 

  • Li AC, Binder CJ, Guttierrez A, Brown KK, Plotkin CR, Pattiso JW, Vallendor AF, Davis RA, Willson TM, Witztum JL, Palinski W, Glass CK (2005) Different inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ and γ. J Clin Invest 114:1564–1576

    Google Scholar 

  • Li AC, Brown KK, Silvestre MJ, Willson TM, Paliski W, Glass CK (2000) Peroxisome proliferator‐activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor‐deficient mice. J Clin Invest 106:523–531

    Article  PubMed  CAS  Google Scholar 

  • Li AC, Glass CK (2004) PPAR- and LXR‐dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 45:2161–2173

    Article  PubMed  CAS  Google Scholar 

  • Lindsey S, Harwood HJ (1995) Inhibition of mammalian squalene synthase activity by zaragozig acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation. J Biol Chem 270:9083–9096

    Article  PubMed  CAS  Google Scholar 

  • Linton MF, Farese RV, Chiesa G, Grass DS, Chin P, Hammer RE, Hobbs HH, Young SG (1993) Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and apolipoprotein (a). J Clin Invest 92:3029–3037

    Article  PubMed  CAS  Google Scholar 

  • Linz W, Schölkens BA (1992) Role of bradykinin in the cardiac effects of angiotensin‐converting enzyme inhibitors. J Cardiovasc Pharmacol 20(Suppl 9):S83–S90

    Article  PubMed  CAS  Google Scholar 

  • Linz W, Wiemer G, Gohlke P, Unger T, Schölkens BA (1994) The contribution of bradykinin to the cardiovascular actions of ACE inhibitors. In Lindpaintner K, Ganten D (eds) The Cardiac Renin Angiotensin System. Futura Publ Co., Inc., Armonk, NY, pp 253–287

    Google Scholar 

  • Linz W, Wiemer G, Schölkens BA (1993) Contribution of bradykinin to the cardiovascular effects of ramipril. J Cardiovasc Pharmacol 22(Suppl 9):S1–S8

    PubMed  CAS  Google Scholar 

  • Lopez A, Vial R, Gremillion L, Bell L (1971) Automated simultaneous turbidimetric determination of cholesterol in β- and pre-β-lipoproteins. Clin Chem 17:994–997

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lund EG, Menke JG, Sparrow CP (2003) Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 23:1169–1177

    Article  PubMed  CAS  Google Scholar 

  • Lundholm L (1978) Influence of nicotinic acid, nicitrol and ß-pyridicarbinol on experimental hyperlipidemia and atherosclerosis in mini-pigs. Atherosclerosis 29:217–239

    Article  PubMed  CAS  Google Scholar 

  • Lustalot P, Schuler W, Albrecht W (1961) Comparison of drug actions in a spectrum of experimental anti‐atherosclerotic test systems. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp, Amsterdam, pp 271–276

    Google Scholar 

  • Lutton C, Ouguerram K, Sauvage M, Magot T (1990) Turnover of [14C]sucrose HDL and uptake by organs in the normal or genetically hypercholesterolemic (RICO) rat using a constant infusion method. Reprod Nutr Dev 30:97–101

    Article  PubMed  CAS  Google Scholar 

  • Lyle EM, Fujita T, Conner MW, Connolly TM, Vlasuk GP, Lynch JL (1995) Effect of inhibitors of factor Xa or platelet adhesion, heparin, and aspirin on platelet deposition in an atherosclerotic rabbit model of angioplastic injury. J Pharmacol Toxicol Meth 33:53–61

    Article  CAS  Google Scholar 

  • Makheja AN, Bloom S, Muesing R, Simon T, Bailey JM (1989) Anti‐inflammatory drugs in experimental atherosclerosis. 7. Spontaneous atherosclerosis in WHHL rabbits and inhibition by cortisone acetate. Atherosclerosis 76:155–161

    Article  PubMed  CAS  Google Scholar 

  • Malinow MR, McLaughlin P, Papworth L, Naito HK, Lewis L, McNulty WP (1976) A model for therapeutic intervention on established coronary atherosclerosis in a nonhuman primate. In: Day CE (ed) Atherosclerosis Drug Discovery. Plenum Press, New York and London, pp 3–31

    Chapter  Google Scholar 

  • Manderson JA, Cocks TM, Campbell GR (1990) Changes in vascular reactivity following endothelial denudation. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:564–566

    Article  Google Scholar 

  • Mansuy D, Sassi A, Dansette PM, Plat M (1986) A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione. Biochem Biophys Res Commun 135:1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Mao SJT, Patton JG, Badimon JJ, Kottke BA, Alley MC, Cardin AD (1983) Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of 125I-labeled low-density lipoproteins by combined use of two monoclonal antibodies. Clin Chem 29:1890–1897

    PubMed  CAS  Google Scholar 

  • Mao SJT, Yates MT, Rechtin AN, Jackson RL, Van Sickle WA (1991) Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J Med Chem 34:298–302

    Article  PubMed  CAS  Google Scholar 

  • Mark M, Müller P, Maier R, Eisele B (1996) Effects of a novel 2,3-oxidosqualene cyclase inhibitor on the regulation of cholesterol biosynthesis in HepG2 cells. J Lipid Res 37:148–158

    PubMed  CAS  Google Scholar 

  • Marx N, Duez H, Fruchart JC, Staels B (2004) Peroxisome proliferator‐activated receptors and atherogenesis. Regulators of gene expression in vascular cells. Circ Res 94:1168–1178

    Article  PubMed  CAS  Google Scholar 

  • Mathur SN, Armstrong ML, Alber CA, Spector AA (1981) Hepatic acyl-CoA:cholesterol acyltransferase activity during diet-induced hypercholesterolemia in cynomolgus monkeys. J Lipid Res 22:659–667

    PubMed  CAS  Google Scholar 

  • Matsuda K (1994) ACAT inhibitors as antiatherosclerotic agents: Compounds and mechanisms. Med Res Rev 14:271–305

    Article  PubMed  CAS  Google Scholar 

  • Mauro VF, MacDonald JL (1991) Simvastatin: A review of its pharmacology and clinical use. DICP, Annal Pharmacother 25:257–264

    CAS  Google Scholar 

  • McCarthy PA (1993) New approaches to atherosclerosis: An overview. Med Res Rev 13:139–159

    Article  PubMed  CAS  Google Scholar 

  • McLean LR, Hagaman KA (1989) Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper. Biochemistry 28:321–327

    Article  PubMed  CAS  Google Scholar 

  • McTaggart F, Brown GR, Davidson RG, Freeman S, Holdgate GA, Mallion KB, Mirrlees DJ, Smith GJ, Ward WH (1996) Inhibition of squalene synthase of rat liver by novel 3′substituted quinuclidines. Biochem Pharmacol 51:1477–1487

    Article  PubMed  CAS  Google Scholar 

  • Meier KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein E-deficient mouse; a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014

    Article  CAS  Google Scholar 

  • Memon RA, Tecott LH, Nonogaki K, Beigneux A, Moser AH, Grunfeld C, Feingold KR (2000) Up‐regulation of peroxisome proliferator‐activated receptors (PPA-α) and PPR-γ messenger ribonucleic acid expression in the liver in murine obesity: triglitazone induces expression of PPAR-γ responsive adipose tissue‐specific genes in the liver of obese mice. Endocrinology 141:4021–4031

    Article  PubMed  CAS  Google Scholar 

  • Millar JS, Cromley DA, McCoy MG, Rader DJ, Billheimer JT (2005) Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339. J Lipid Res 46:2032–2028

    Article  CAS  Google Scholar 

  • Miller LR, Pinkerton FT, Schroepfer GJ (1980) 5α-Cholest-8(14)-en-3β-ol-15-one, a potent inhibitor or sterol synthesis, reduces the levels of activity of enzymes involved in the synthesis and reduction of 3-hydroxy-3-methylglutaryl coenzyme A in CHO-K1 cells. Biochem Intern 1:223–228

    CAS  Google Scholar 

  • Ming-Peng S, Ren-Yi X, Bi-Fang R, Zong-Li W (1990) High density lipoproteins and prevention of experimental atherosclerosis with special reference to tree shrews. Ann New Acad Sci 598:339–351

    Article  Google Scholar 

  • Mitani H, Egashira K, Kimura M (2003b) HMG-Ca reductase inhibitor, fluvastatin, has cholesterol‐lowering independent "direct`` effects on atherosclerotic vessels in high cholesterol diet-fed rabbits. Pharmacol Res 48:417–427

    Article  PubMed  CAS  Google Scholar 

  • Mitani H, Egashira K, Ohashi N, Yoshikawa M, Niwa S, Nonomura K, Nakashima A, Kimura M (2003a) Preservation of endothelial function by the HMG-CoA reductase inhibitor fluvastatin through its lipid-lowering independent antioxidant properties in atherosclerotic rabbits. Pharmacology 68:121–130

    Article  PubMed  CAS  Google Scholar 

  • Moore KJ, Rosen RD, Fitzgerald ML, Randow F, Andersson LP, Altshuler D (2001) The role of PPARγ in macrophage differentiation and cholesterol uptake. Nat Med 7:41–47

    Article  PubMed  CAS  Google Scholar 

  • Moore WR, Schatzman GL, Jarvi ET, Gross RS, McCarthy JR (1992) Terminal difluoro olefin analogues of squalene are time‐dependent inhibitors of squalene epoxidase. J Am Chem Soc 114:360–361

    Article  CAS  Google Scholar 

  • Morand OH, Aebi JD, Dehmlow H, Ji Y-H, Gains N, Lengsfeld H, Himber J (1997) Ro 48–8071, a new 2,3-oxidosqualene:lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastin. J Lipid Res 38:373–390

    PubMed  CAS  Google Scholar 

  • Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II. Academic Press, New York and London, pp 121–143

    Google Scholar 

  • Murase T, Uchimura H (1980) A selective decline of postheparin plasma hepatic triglyceride lipase in hypothyroid rats. Metabolism 29:797–801

    Article  PubMed  CAS  Google Scholar 

  • März W, Scharnagel H, Siekmeier R, Träger L, Gross W (1989) Fast lipoprotein chromatography (FPLC) of plasma lipoproteins. J Clin Chem Clin Biochem 27:719

    Google Scholar 

  • März W, Siekmeier R, Scharnagl H, Seiffert UB, Gross W (1993) Fast lipoprotein chromatography: a new method of analysis for plasma lipoproteins. Clin Chem 39:2276–2281

    PubMed  Google Scholar 

  • Müller KR, Li JR, Dinh DM, Subbiah MTR (1979) The characteristics and metabolism of a genetically hypercholesterolemic strain of rats (RICO). Biochim Biophys Acta 574:334–343

    Article  PubMed  Google Scholar 

  • Nagata Y, Yonemoto M, Iwasawa Y, Shimuzi‐Nagumo A, Hattori H, Sawazaki Y, Kamei T (1995) N-[2-[N'-Pentyl-(6,6-dimethyl-2,4-heptadinyl)amino]ethyl]-(2-methyl-1-naphthylthio)acetamide (FY-087). A new acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor of diet-induced atherosclerosis formation in mice. Biochem Pharmacol 49:643–651

    Article  PubMed  CAS  Google Scholar 

  • Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE‐deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    Article  PubMed  CAS  Google Scholar 

  • Nervi F, Brinfman M, Allalón W, Depiereux E, Del Pozo R (1984) Regulation of biliary cholesterol secretion in the rat. Role of hepatic esterification. J Clin Invest 74:2226–2237

    Article  PubMed  CAS  Google Scholar 

  • Ness GC, Zhao Z, Keller RK (1994) Effect of squalene synthase inhibition on the expression of hepatic cholesterol biosynthesis enzymes, LDL receptor, and cholesterol 7-alpha‐hydroxylase. Arch Biochem Biophys 311:277–285

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Ehle P, Schotz MC (1976) A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res 17:536–541

    PubMed  CAS  Google Scholar 

  • Nishimoto T, Amano Y, Tozawa R, Ishikawa E, Imura Y, Yukimasa H, Sugiyama Y (2003) Lipid-lowering properties of TAK-475, a squalene synthase inhibitor in vivo and in vitro. Br J Pharmacol 139:911–918

    Article  PubMed  CAS  Google Scholar 

  • Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173

    Article  PubMed  CAS  Google Scholar 

  • Nuclear Receptors Nomenclature Committee (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163

    Article  Google Scholar 

  • O'Brien PM, Sliskovic DR (1992) ACAT inhibitors: A potential new approach to the treatment of hypercholesterolaemia and atherosclerosis. Curr Opin Ther Pat 2:507–526

    Article  Google Scholar 

  • O'Meara NMG, Devery RAM, Owens D, Collins PB, Johnson AH, Tomkin GH (1991) Serum lipoproteins and cholesterol metabolism in two hypercholesterolaemic rabbit models. Diabetologia 34:139–143

    Article  PubMed  Google Scholar 

  • Oehlschlager AC, Singh SM, Sharma S (1991) Squalene synthetase inhibitors: synthesis of sulfonium ion mimics of the carbocationic intermediates. J Org Chem 56:3856–3861

    Article  CAS  Google Scholar 

  • Ogishima T, Okuda K (1986) An improved method for assay of cholesterol 7α-hydroylase activity. Anal Biochem 158:228–232

    Article  PubMed  CAS  Google Scholar 

  • Oliver WR Jr, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HF, Sternbach DD, Kliewer SA, Hansen BC, Wilson TM (2001) The peroxisome proliferator‐activated receptor δ promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–5311

    Article  PubMed  CAS  Google Scholar 

  • Ougueram K, Magot T, Lutton C (1991) Alterations in cholesterol metabolism in the genetically hypercholesterolemic RICO rat: an overview. In: Malmedier CL, Alaupovic P, Brewer Jr HB (eds) Hypercholesterolemia, hypocholesterolemia, hypertriglyceridemia, in vivo kinetics. Adv Exp Med Biol 285:257–274. Plenum Press, New York and London

    Google Scholar 

  • Ougueram K, Magot T, Lutton C (1992) Metabolism of intestinal triglyceride-rich lipoproteins in the genetically hypercholesterolemic rat (RICO). Atherosclerosis 93:210–208

    Google Scholar 

  • Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D (1990) Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Atherosclerosis 10:316–323

    CAS  Google Scholar 

  • Paigen B, Morrow A, Brandon C, Mitchell D, Holmes P (1985) Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57:65–73

    Article  PubMed  CAS  Google Scholar 

  • Paigen B, Morrow A, Holmes PA, Mitchell D, Williams RA (1987) Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis 68:231–240

    Article  PubMed  CAS  Google Scholar 

  • Parish EJ, Nanduri VBB, Kohl HH, Taylor FR (1986) Oxysterols: Chemical synthesis, biosynthesis and biological activities. Lipids 21:27–30

    Article  PubMed  CAS  Google Scholar 

  • Parker RA, Clark RW, Sit SY, Lanier TL, Grosso RA, Wright JJ (1990) Selective inhibition of cholesterol synthesis in liver vs. extrahepatic tissues by HMG CoA reductase inhibitors. J Lipid Res 31:1271–1282

    PubMed  CAS  Google Scholar 

  • Parker RA, Huang Q, Tesfamariam B (2003) Influence of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors on endothelial nitric oxide synthase and the formation of oxidants in the vasculature. Atherosclerosis 169:19–29

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy S, Wieland E, Steinberg D (1989) A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 86:1046–1050

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77:641–644

    Article  PubMed  CAS  Google Scholar 

  • Pearce BC, Parker RA, Deason ME, Qureshi AA, Kim Wright JJ (1992) Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem 35:3595–3606

    Article  PubMed  CAS  Google Scholar 

  • Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, Mangelsdorf DJ (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93:693–704

    Article  PubMed  CAS  Google Scholar 

  • Petty KJ (1995) Tissue- and cell-specific distribution of proteins that interact with the human thyroid receptorβ. Mol Cell Endocrinol 108:131–142

    Article  PubMed  CAS  Google Scholar 

  • Philipp BW, Shapiro DJ (1979) Improved methods for the assay and activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Lipid Res 20:588–593

    PubMed  CAS  Google Scholar 

  • Picard JA (1993) ACAT inhibitors. Curr Opin Ther Pat 3:151–160

    Article  Google Scholar 

  • Pineda Torra I, Gervois P, Stels B (1999) Peroxisome proliferator‐activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol 10:151–159

    Article  PubMed  CAS  Google Scholar 

  • Planke MO, Olivier P, Clavey V, Marzin D, Fruchart JC (1988) Aspects of cholesterol metabolism in normal and hypercholesterolemic Syrian hamster. Methods Find Exp Clin Pharmacol 10:575–579

    Google Scholar 

  • Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  PubMed  CAS  Google Scholar 

  • Princen HMG, Meijer P (1990) Maintenance of bile acid synthesis and cholesterol 7α-hydroxylase activity in cultured rat hepatocytes. Biochem J 272:273–275

    PubMed  CAS  Google Scholar 

  • Purcell-Huynh DA, Farese RV, Johnson DF, Flynn LM, Pierotti V, Newland DE, Linton MF, Young SG (1995) Transgenic mice expressing high levels of human apoliprotein B develop severe atherosclerotic lesions in response to a high-fat diet. J Clin Invest 95:2246–2257

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Amaboldi L, McGeady P, Gelb MH, Veri D, Tagliabue C, Quarato P, Ferraboschi P, Santaniello E, Paoletti R, Fumagalli R, Corsini A (1997) Pharmacological control of mevalonate pathway: Effect on arterial smooth muscle cell proliferation. J Pharmacol Exp Ther 281:1144–1153

    PubMed  CAS  Google Scholar 

  • Rankin SM, Parthasarathy S, Steinberg D (1991) Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 32:449–456

    PubMed  CAS  Google Scholar 

  • Reardon CA, Getz GS (2001) Mouse models of atherosclerosis. Curr Opin Lipidol 12:167–173

    Article  PubMed  CAS  Google Scholar 

  • Reginato MJ, Krakow Sl, Bailley ST, Lazar MA (1998) Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator‐activated receptor γ. J Biol Chem 273:1855–1858

    Google Scholar 

  • Repa JJ, Buhmann KK, Farese RV Jr et al (2004) ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis. Hepatology 40:1088–1097

    Article  PubMed  CAS  Google Scholar 

  • Richterich R, Lauber K (1962) Bestimmung des Gesamt‐Cholesterins im Serum. VIII. Mitteilung über Ultramikromethoden im klinischen Laboratorium. Klin Wschr 40:1252–1256

    Article  PubMed  CAS  Google Scholar 

  • Ricote M, Huang JT, Welch JS, Glass CK (1999) The peroxisome proliferator‐activated receptor (PPARγ) as a regulator of monocyte/macrophage function. J Leukoc Biol 66:733–739

    PubMed  CAS  Google Scholar 

  • Rieusset J, Auwerx J, Vidal H (1999) Regulation of gene expression by activation of the peroxisome proliferator‐activated receptor γ with rosiglitazone (BRL 49653) in human adipocytes. Biochem Biophys Res Commun 265:265–271

    Article  PubMed  CAS  Google Scholar 

  • Riezebos J, Vleeming W, Beems RB, van Amsterdam JGC, Meijer GW, de Wildt DJ, Porsius AJ, Wemer J (1994) Comparison of Israpidine and Ramipril in cholesterol-fed rabbits: effect on progression of atherosclerosis and endothelial dysfunction. J Cardiovasc Pharmacol 23:415–423

    PubMed  CAS  Google Scholar 

  • Rikitake Y, Kawashima S, Takeshita S, Yamashita T, Azumi H, Yasuhara M, Nishi H, Inoue N, Yokoyama M (2001) Anti‐oxidative properties of fluvastatin, an HMG-CoA reductase inhibitor, contribute to prevention of atherosclerosis in cholesterol-fed-rabbits. Atherosclerosis 154:87–96

    Article  PubMed  CAS  Google Scholar 

  • Riottot M, Olivier Ph, Huet A, Caboche JJ, Parquet M, Khallou J, Lutton C (1993) Hypolipidemic effects of β-cyclodextrin in the hamster and in the genetically hypercholesterolemic RICO rat. Lipids 28:181–188

    Google Scholar 

  • Roark WH, Roth BC (1994) ACAT inhibitors: preclinical profiles of clinical candidates. Exp Opin Invest Drugs 3:1143–1152

    CAS  Google Scholar 

  • Roberts A, Thompson JS (1976) Inbred mice and their hybrids as an animal model for atherosclerosis research. In: Day CE (ed) Atherosclerosis Drug Discovery. Plenum Press, New York and London, pp 313–327

    Chapter  Google Scholar 

  • Rodgers JB (1969) Assay of acyl-CoA:monoglyceride acyltransferase from rat small intestine using continuous recording spectroscopy. J Lipid Res 10:427–432

    PubMed  CAS  Google Scholar 

  • Rodwell VW, Nordstrom JL, Mitschelen JJ (1976) Regulation of HMG-CoA reductase. In: Paoletti R, Kritchevsky D (eds) Advances in Lipid Research Vol 14:1–74, Academic Press, New York

    Google Scholar 

  • Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    PubMed  CAS  Google Scholar 

  • Rosenberg SH (1998) Squalene synthase inhibitors. Exp Opin Ther Pat 8:521–530

    Article  CAS  Google Scholar 

  • Rosenfeld ME, Tsukada T, Gown AM, Ross R (1987) Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7:9–23

    Article  PubMed  CAS  Google Scholar 

  • Roth BD, Blankley CJ, Hoefle ML, Holmes A, Roark WH, Trivedi BK, Essenburg AD, Kieft A, Krause BR, Stanfield RL (1992) Inhibitors of acyl CoA:cholesterol acyltransferase. 1. Identification and structure‐activity relationships of a novel series of fatty acid anilide hypocholesterolemic agents. J Med Chem 35:1609–1617

    Article  PubMed  CAS  Google Scholar 

  • Rothblatt GH, Naftulin M, Arbogast LY (1977) Stimulation of acyl-CoA:cholesterol acyltransferase activity by hyperlipemic serum lipoproteins. Proc Soc Exp Biol Med 155:501–506

    Google Scholar 

  • Rubanyi GM, Lorenz RR, Vanhoutte PM (1985) Bioassay of endothelium‐derived relaxing factor(s): inactivation by catecholamines. Am J Physiol 249:H95–H110

    PubMed  CAS  Google Scholar 

  • Rubin EM, Ishida BY, Clift SM, Krauss RM (1991) Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci USA 88:434–438

    Article  PubMed  CAS  Google Scholar 

  • Rudman D, Brown SJ, Malkin MF (1963) Adipokinetic actions of adrenocorticotropin, thyroid‐stimulating hormone, vasopressin, α- and β-melanocyte‐stimulating hormones, fraction H, epinephrine and norepinephrine in the rabbit, guinea pig, hamster, rat and dog. Endocrinology 72:527–543

    Article  CAS  Google Scholar 

  • Ryder NS (1992) Terbenafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126: Suppl 39:2–7

    Google Scholar 

  • Saito Y, Kitahara MKS, Sakashita MSK, Toyoda KSK, Shibazaki TSK (1993) Novel inhibitors of atherosclerotic intimal thickening. Curr Opin Therap Patents 3:1241–1242

    Article  Google Scholar 

  • Saltykow S (1908) Die experimentell erzeugten Arterienveränderungen in ihrer Beziehung zu Atherosklerose und verwandten Krankheiten des Menschen. Zentralbl Allgem Pathol Pathol Anat 19:321–368

    Google Scholar 

  • Sasan DA, Newland DE, Tao R, Marcovina S, Wang J, Mooser V, Hammer RE, Hobbs HH (1998) Low density lipoprotein receptor‐negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: no accentuation by apolipoprotein(s). Proc Natl Acad Sci USA 95:4544–4549

    Article  Google Scholar 

  • Sata M, Nishimatsu H, Suzuki E, Sugiura S, Yoshizumi M, Ouchi Y, Hirata Y, Ngai R (2001) Endothelial nitric oxide synthase is essential for the HMG-CoA reductase inhibitor cerivastin to promote collateral growth ion response to ischemia. FASEB J 15:2530–2532

    PubMed  CAS  Google Scholar 

  • Savkur RS, Bramlett KS, Clawson D, Burris TP (2004) Pharmacology of nuclear receptor‐coregulator recognition. Vitam Horm 68:145–183

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Matsuo M, Hagihara H, Tenda N, Nagayoshi A, Okumura H, Washizuka KI, Seki J, Goto T (2001) Effect of FR194738, a potent inhibitor of squalene epoxidase, on cholesterol metabolism in HepG2 cells. Eur J Pharmacol 431:11–16

    Article  PubMed  CAS  Google Scholar 

  • Sawada M, Washizuka K, Okumura H (2004) Synthesis and biological activity of a novel squalene epoxidase inhibitor, FR194738. Bioorg Med Chem Lett 14:633–637

    Article  PubMed  CAS  Google Scholar 

  • Schmitz G, Niemann R, Brennhausen B, Krause R, Assmann G (1985) Regulation of high density lipoprotein receptors in cultured macrophages: role of acyl-CoA:cholesterol acyltransferase. EMBO J 4:2773–2779

    PubMed  CAS  Google Scholar 

  • Schneider WJ, Brown MS, Goldstein JL (1983) Kinetic defects in the processing of the low density lipoprotein receptor in fibroblasts from WHHL rabbits and a family with familial hypercholesterolemia. Mol Biol Med 1:353–367

    PubMed  CAS  Google Scholar 

  • Scholz W, Albus U, Hropot M, KLaus E, Linz W, Schölkens BA (1990) Zunahme des Na+/H+-Austausches an Kaninchenerythrozyzen unter atherogener Diät. In: Assmann G, Betz E, Heinle H, Schulte H (eds) Arteriosklerose. Neue Aspekte aus Zellbiologie und Molekulargenetik, Epidemiologie und Klinik. Tagung der Deutschen Gesellschaft für Arteriosklerose‐Forschung. pp 296–302

    Google Scholar 

  • Schotz MC, Scanu A, Page IH (1957) Effect of Triton on lipoprotein lipase of rat plasma. Am J Physiol 188:399–402

    PubMed  CAS  Google Scholar 

  • Schurr PE, Schultz JR, Day CE (1976) High volume screening procedures for hypobetalipoproteinemic activity in rats. In: Day CE (ed) Atherosclerosis Drug Discovery. Plenum Press, New York and London, pp 215–229

    Chapter  Google Scholar 

  • Schäfer H-L, Linz W, Bube A, Falk E, Hennig A, Hoffmann A, Leineweber M, Matthäi U, Schmalz M, Sendlbeck E, Kramer W, Schölkens BA (1999) The Syrian hamster as animal model for atherosclerosis. Naunyn‐Schmiedeberg's Arch Pharmacol 359S: R111

    Google Scholar 

  • Scott WA (1990) Hydrophilicity and the differential pharmacology of pravastin. In: Wood C (ed) Lipid management: Pravastin and the differential pharmacology of HMG-CoA reductase inhibitors. Royal Soc Medi Serv, Round Table Series, No 16:17–25

    Google Scholar 

  • Scott WA (1990) Hydrophilicity and the differential pharmacology of pravastin. In: Wood C (ed) Lipid management: Pravastin and the differential pharmacology of HMG-CoA reductase inhibitors. Royal Society of Medicine Services, London, pp 17–25

    Google Scholar 

  • Sen SE, Prestwich GD (1989) Squalene analogs containing isopropylidene mimics as potential inhibitors of pig liver squalene epoxidase and oxidosqualene cyclase. J Med Chem 32:2152–2158

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DJ, Rodwell VW (1969) Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity. Biochem Biophys Res Commun 37:687–872

    Google Scholar 

  • Shaw MK, Newton RS, Sliskovic DR, Roth BD, Ferguson E, Krause BR (1990) HEP-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase. Biochem Biophys Res Commun 170:726–734

    Article  PubMed  CAS  Google Scholar 

  • Shefer S, Hauser S, Lapar V, Mosbach EH (1972) Diurnal variation of HMG CoA reductase activity in rat intestine. J Lipid Res 13:571–573

    PubMed  CAS  Google Scholar 

  • Shimizu K, Aikawa M, Takayama K, Libby P, Mitchell RN (2003) Direct anti‐inflammatory mechanisms contribute to attenuation of experimental allograft arteriosclerosis by statins. Circulation 108:2113–2120

    Article  PubMed  CAS  Google Scholar 

  • Shore B, Shore V (1976) Rabbits as a model for the study of hyperlipoproteinemia and atherosclerosis. In: Day CE (ed) Atherosclerosis Drug Discovery. Plenum Press, New York and London, pp 123–141

    Chapter  Google Scholar 

  • Siedel J, Hägele EO, Ziegenhorn J, Wahlefeld AW (1983) Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem 29:1075–1080

    PubMed  CAS  Google Scholar 

  • Simpson CF, Harms RH (1969) Aortic atherosclerosis of turkeys induced by feeding of cholesterol. J Atheroscler Res 10:63–75

    Article  PubMed  CAS  Google Scholar 

  • Sirtori CR (1990) Pharmacology and mechanism of action of the new HMG-CoA reductase inhibitors. Pharmacol Res 22:555–563

    Article  PubMed  CAS  Google Scholar 

  • Slayback JRB, Cheung LWY, Geyer RP (1977) Quantitative extraction of microgram amounts of lipid from cultured human cells. Anal Biochem 83:372–384

    Article  PubMed  CAS  Google Scholar 

  • Sliskovic DR, Picard JA (1997) Squalene synthase inhibitors. Emerg Drugs 2:93–107

    Article  CAS  Google Scholar 

  • Sliskovic DR, White AD (1991) Therapeutic potential of ACAT inhibitors as lipid lowering and anti‐atherosclerotic agents. Trends Pharmacol Sci 12:194–199

    Article  PubMed  CAS  Google Scholar 

  • Soma MR, Corsini A, Paoletti R (1992) Cholesterol and mevalonic acid modulation in cell metabolism and multiplication. Toxicol Lett 64/65:1–15

    Article  Google Scholar 

  • Soma MR, Donetti E, Paroline C, Mazzini G, Ferrari C, Fumagalli R, Paoletti R (1993) HMG-CoA reductase inhibitors. In vivo effects on carotid intimal thickening in normocholesterolemic rabbits. Arterioscler Thrombos 13:571–578

    Article  CAS  Google Scholar 

  • Soret MG, Blanks MC, Gerritsen GC, Day CE, Block EM (1976) Diet-induced hypercholesterinemia in the diabetic and non-diabetic Chinese hamster. In: Day CE (ed) Atherosclerosis Drug Discovery. Plenum Press, New York and London, pp 329–343

    Chapter  Google Scholar 

  • Sparrow CP, Baffic J, Lam MH, Lund EG, Adams AD, Fu X, Hayes N, Jones AB, Macnaul KL, Ondeyka J, Singh S, Wang J, Zhou G, Moller DE, Wright SD, Menke JG (2002) A potent synthetic LXR agonist is more effective than cholesterol loading and inducing ABCA1 mRNA and stimulating cholesterol efflux. J Biol Chem 277:10021–10027

    Article  PubMed  CAS  Google Scholar 

  • Sparrow CP, Burton CA, Hernandez M, Mundt S, Hassing H, Patel S, Rosa R, Hermanowski‐Vosatka A, Wang PR, Zhang D, Peterson L, Detmers PA, Chao YS, Wright SD (2001) Simvastin has anti‐inflammatory and antiatherosclerotic activities independent of plasma cholesterol lowering. Arterioscler Thromb Vasc Biol 21:115–121

    Article  PubMed  CAS  Google Scholar 

  • Spencer TA, Li D, Russel JS, Collins JL, Bledsoe RK, Consler TG, Moore LB, Galardi CM, McKee DD, Moore JT, Watson MA, Parks DJ, Lambert MH, Willson TM (2001) Pharmacophore analysis of the nuclear oxysterol receptor LXRα . J Med Chem 44:886–897

    Article  PubMed  CAS  Google Scholar 

  • Sperry WM (1956) Lipid analysis. In: Glick D (ed) Methods in biochemical analysis, Vol. II, pp 83–111

    Google Scholar 

  • Sprague EA, Kothapalli R, Kerbacher JJ, Edwards EH, Schwartz CJ, Elbein AD (1993) Inhibition of scavenger receptor‐mediated modified low-density lipoprotein endocytosis in cultured bovine aortic endothelial cells by the glycoprotein processing inhibitor castanospermine. Biochemistry 32:8888–8895

    Article  PubMed  CAS  Google Scholar 

  • Staels B (2001) Regulation of lipid and lipoprotein metabolism by retinoids. J Am Acad Dermatol 45:S158–S167

    Article  PubMed  CAS  Google Scholar 

  • Steinberg D (1990) Arterial metabolism of lipoproteins in relation to atherogenesis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:188–193

    Article  Google Scholar 

  • Steinberg D, Parthasaraty S, Carew TE (1988) In vivo inhibition of foam cell development by probucol in Watanabe rabbits. Am J Cardiol 62:6B–12B

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecher UP (1987) Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 262:3603–3608

    PubMed  CAS  Google Scholar 

  • Steinbrecher UP (1990) Oxidatively modified lipoproteins. Curr Opin Lipidol 1:411–415

    Article  Google Scholar 

  • Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Arteriosclerosis 7:135–143

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecher UP, Zhang H, Lougheed M (1990) Role of oxidatively modified LDL in atherosclerosis. Free Rad Biol Med 9:155–158

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus L, Rubin EM (1993) Atherogenesis. Insights from the study of transgenic and gene-targeted mice. Trends Cardiovasc Med 3:130–134

    Article  PubMed  CAS  Google Scholar 

  • Suckling KE, Benson GM, Bond B, Gee A, Glen A, Haynes C, Jackson B (1991) Cholesterol lowering and bile acid excretion in the hamster with cholestyramine treatment. Atherosclerosis 89:183–190

    Article  PubMed  CAS  Google Scholar 

  • Suckling KE, Boyd GS, Smellie CG (1982) Properties of a solubilised and reconstituted preparation of acyl-CoA:cholesterol acyltransferase from rat liver. Biochem Biophys Acta 710:154

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Ishikawa E, Odaka H, Miki N, Tawada H, Ikeda H (1995) TMP-153, a novel ACAT inhibitor, inhibits cholesterol absorption and lowers cholesterol in rats and hamsters. Atherosclerosis 113:71–78

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PM, Mazdour H, Quarfordt SH, Maeda N (1998) Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse ApoE with human ApoE*2. J Clin Invest 102:130–135

    Article  PubMed  CAS  Google Scholar 

  • Sumi D, Hayashi T, Thakur NK, Jayachandran M, Asai Y, Kano H, Matsui H, Iguchi A (2001) A HMG-CoA reductase inhibitor possesses a potent anti‐atherosclerotic effect other than lipid lowering effects – the relevance of endothelial nitric oxide reductase and superoxide anion scavenging action. Atherosclerosis 155:347–357

    Article  PubMed  CAS  Google Scholar 

  • Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium‐dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68:330–337

    Article  PubMed  CAS  Google Scholar 

  • Tai HH, Bloch K (1972) Squalene epoxidase of rat liver. J Biol Chem 247:3767–3773

    PubMed  CAS  Google Scholar 

  • Tailleux A, Torpier G, Mezdour H, Fruchart JC, Staels B, Fiévet C (2003) Murine models to investigate pharmacological compounds acting as ligands of PPARs in dyslipemia and atherosclerosis. Trend Pharmacol Sci 24:530–534

    Article  CAS  Google Scholar 

  • Takano T, Mowri HO (1990) Peroxidized lipoproteins recognized by a new monoclonal antibody (DLR1a/104G) in atherosclerotic lesions. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598:136–142

    Article  PubMed  CAS  Google Scholar 

  • Tamasi G, Borsy J, Patthy A (1968) Comparison of the anti-lipemic effect of nicotinic acid (NA) and 4-methylpyrazole-5-carboxylic acid (MPC) in rats. Biochem Pharmacol 17:1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Kimura T (1994) ACAT inhibitors in development. Exp Opin Invest Drugs 3:427–436

    Article  CAS  Google Scholar 

  • Tanaka H, Ohtsuka I, Kogushi M, Kimura T, Fujimori T, Saeki T, Hayashi K, Kobayashi H, Yamada T, Hiyoshi H, Saito I (1994) Effect of the acyl-CoA:cholesterol acyltransferase inhibitor, E5324, on experimental atherosclerosis in rabbits. Atherosclerosis 107:187–210

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Yamamoto J, Iwasaki S, Asaba H, Hamura H, Ikeda Y, Watanabe M, Mgoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yagishawa M, Kodama T, Sakai J (2003) Activation of peroxisome proliferator‐activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924–15929

    Article  PubMed  CAS  Google Scholar 

  • Tangirala RK, Bishoff ED, Joseph SB, Wagner BL, Walczak R, Laffitte BA, Daige CL, Thomas DA, Heyman RA, Mangelsdorf DJ, Wang X, Lusis AJ, Tontonoz P, Scholman IG (2002) Identification of liver XC receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci USA 99:11896–11901

    Article  PubMed  CAS  Google Scholar 

  • Tao L, Liu HR, Gao E, Teng ZP, Lopez BL, Christopher TA, Ma XL, Batinic‐Haberle I, Willette RN, Ohlstein EH, Yue TL (2003) Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator‐activated receptor-γ agonist in hypercholesterolemia. Circulation 108:2805–2811

    Article  PubMed  CAS  Google Scholar 

  • Telford DE, Edwards JY, Lipson SM, Hugh P, Barrett HP, Burnett JR, Krul ES, Keller BT, Huff MW (2003) Inhibition of both the apical sodium‐dependent bile acid transporter and HMG-CoA reductase markedly enhances the clearance of LDL apoB. J Lipid Res 44:943–952

    Article  PubMed  CAS  Google Scholar 

  • Tennent DM, Siegel H, Zanetti ME, Kuron GW, Ott WH, Wolf FJ (1960) Plasma cholesterol lowering action of bile acid binding polymers in experimental animals. J Lipid Res 1:469–473

    PubMed  CAS  Google Scholar 

  • Terasaka N, Hiroshima A, Koieyama T, Ubukata N, Morikawa Y, Nakai D, Inaba T (2003) T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor‐deficient mice. FEBS Lett 536:6–11

    Article  PubMed  CAS  Google Scholar 

  • Toda H, Kihara K, Hashimoto M, Mizogami S (1988) Bile acid binding and hypocholesterolemic activity of a new anion exchange resin from 2-methylimidazol and epichlorhydrin. J Pharm Sci 77:531–533

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Nagy L, Alvarez JGA, Thomazy VA, Evans RM (1988) PPARγ promotes monocytes/macrophages differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  Google Scholar 

  • Tordjman K, Bernal‐Mizrachi C, Zermany L, Weng S, Feng C, Zhang F, Leone TC, Coleman T, Kelly DP, Semenkovich CF (2001) PPARα deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 107:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Trzaskos JM, Magolda RL, Favata MF, Fischer RT, Johnson PR, Chen HW, Ko SS, Leonard DA, Gaylor JL (1993) Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15α-fluorolanost-7-en-3β-ol. A mechanism-based inhibitor of cholesterol biosynthesis. J Biol Chem 268:22591–22599

    PubMed  CAS  Google Scholar 

  • Tso P, Morshed KM, Nutting DF (1991) Importance of acyl CoA:cholesterol acyltransferase (ACAT) on the esterification of cholesterol by enterocytes. FASEB J 5:A709

    Google Scholar 

  • Tsujita Y (1990) A potent HMG-CoA reductase inhibitor, pravastatin sodium. Tissue selective inhibition of cholesterogenesis and preventive effect on atherosclerosis in WHHL rabbits. J Drug Dev 3 (Suppl 1):155–159

    Google Scholar 

  • Tsujita Y (1990b) HMG-CoA reductase inhibitors. J Jpn Atheroscler Soc 18:165–171

    Google Scholar 

  • Tsujita Y, Kuroda M, Shimada Y, Tanzawa K, Arai M, Kaneko I, Tanaka M, Masuda H, Tarumi Ch, Watanabe Y, Fujii S (1986) CS-514, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase: tissue‐selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Biochim Biophys Acta 877:50–60

    Google Scholar 

  • Tsusumi K, Inoue Y, Shima A, Iwasaki K, Kawamura M, Murase T (1993) The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J Clin Invest 92:411–417

    Article  Google Scholar 

  • Tubbs PK, Garland PB (1969) Assay of coenzyme A and some acyl derivatives. Meth Enzymol 13:535–551

    Article  CAS  Google Scholar 

  • Ugawa T, Kakuta H, Inagaki O (2002) Effect of YM-53691, a novel squalene synthase inhibitor, on the clearance rate ofplasma LDL and VLDL in hamsters. Br J Pharmacol 137:561–569

    Article  PubMed  CAS  Google Scholar 

  • Ugawa T, Kakuta H, Moritani H, Inagaki O, Shikama H (2003) YM-53601. a novel squalene synthase inhibitor, suppresses lipogenic biosynthesis and lipid secretion in rodents. Br J Pharmacol 139:140–146

    Article  PubMed  CAS  Google Scholar 

  • Ugawa T, Kakuta H, Moritani H, Matsuda K, Ishihara T, Yamaguchi M, Naganuma S, Iizumi Y, Shikama H (2000) YM-53601, a novel squalene synthase inhibitor, reduces plasma cholesterol and triglyceride levels in several animal species. Br J Pharmacol 131:63–70

    Article  PubMed  CAS  Google Scholar 

  • Ugawa T, Kakuta H, Moritani H, Shikama H (2002) Experimental model of escape phenomenon in hamsters and the effectiveness of YM-53601 in the model. Br J Pharmacol 135:1572–1578

    Article  PubMed  CAS  Google Scholar 

  • Vaidya S, Bostedor R, Kurtz MM, Bergstrom JD, Bansal VS (1998) Massive production of farnesol‐derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A. Arch Biochem Biophys 355:84–92

    Article  PubMed  CAS  Google Scholar 

  • Van Heek M, Compton DS, Davis HR (2001) The cholesterol adsorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur J Pharmacol 415:79–84

    Article  PubMed  Google Scholar 

  • Van Heek M, Farley C, Compton DS, Hoos L, Alton KB, Sybertz EJ, Davis HR (2000) Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH5835, and its glucuronide, SCH60663. Br J Pharmacol 129:1748–1754

    Article  PubMed  Google Scholar 

  • Van Heek M, Farley C, Copton DS, Hoos LM, Smith-Torhan A, Davois HR (2003) Ezetimibe potently inhibits cholesterol absorption but does not affect acute hepatic or intestinal cholesterol synthesis in rats. Br J Pharmacol 138:1459–1464

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz CD, Edwards PA, Tontonoz P (2000) Control of cellular efflux by the nuclear oxysterol receptor LXRα. Proc Natl Acad Sci USA 97:12097–12102

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran A, Repa JJ, Lobacarro JM, Bronson A, Mangelsdorf DJ, Edwards PA (2000) Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J Biol Chem 275:14700–14707

    Article  PubMed  CAS  Google Scholar 

  • Verbeuren TJ, Jordaens FH, Van Hove CE, Van Hoydonk AE, Herman AG (1990) Release and vascular activity of endothelium‐derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol 191:173–184

    Article  PubMed  CAS  Google Scholar 

  • Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium‐dependent and endothelium‐independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res 58:552–564

    Article  PubMed  CAS  Google Scholar 

  • Vosper H, Khoudoli GA, Graham TL, Palmer CAN (2002) Peroxisome proliferator‐activated receptor agonists, hyperlipidemia and atherosclerosis. Pharmacol Ther 95:47–62

    Article  PubMed  CAS  Google Scholar 

  • Vosper H, Patel L, Graham TL, Khoudoli GA, Hill A, Macphee CH, Pinto I, Smith SA, Suckling KE, Wolf CR, Palmer CAN (2001) The peroxisome proliferator‐activated receptor δ promotes lipid accumulation in human macrophages. J Biol Chem 276:44258–44265

    Article  PubMed  CAS  Google Scholar 

  • Vu-Dac N, Schoonjans K, Kosykh, Dallongeville J, Fruchart JC, Staels B, Auwerx J (1995) Fibrates increase human apolipoprotein A-II through activation of the peroxisome proliferators‐activated receptor. J Clin Invest 96:741–750

    Article  PubMed  CAS  Google Scholar 

  • Wahlefeld AW (1974) Triglyceride. Bestimmung nach enzymatischer Verseifung. In: Bergmeier HU (ed) Methoden der enzymatischen Analyse, 3. Auflage, Band II, Verlag Chemie, pp 1878–1882

    Google Scholar 

  • Walsh A, Ito Y, Breslow JL (1989) High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem 264:6488–6494

    PubMed  CAS  Google Scholar 

  • Wang M, Tafuri S (2003) Modulation of PPARγ activity with pharmaceutical agents: treatment of insulin resistance and atherosclerosis. J Cell Biochem 89:38–47

    Article  PubMed  CAS  Google Scholar 

  • Wang YX (2005) Cardiovascular functional phenotypes and pharmacological responses in apolipoprotein E deficient mice. Neurobiol Aging 26:309–316

    Article  PubMed  CAS  Google Scholar 

  • Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga‐Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fibre type and running endurance by PPARδ. PloS Biol 2:1532–1539

    CAS  Google Scholar 

  • Wassmann S, Nickenig G (2003) Interrelationship of free oxygen radicals and endothelial dysfunction – modulation by statins. Endothelium 10:23–33

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL)-rabbit). Incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36:261–268

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Ito T, Kondo T (1977) Breeding of a rabbit strain of hyperlipidemia and characteristic of these strain. Exp Anim 26:35–42

    CAS  Google Scholar 

  • Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 56:71–79

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Ito T, Shiomi M, Tsujita Y, Kuroda M, Arai M, Fukami M, Tamura A (1988) Preventive effect of pravastatin sodium, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on coronary atherosclerosis and xanthoma in WHHL rabbits. Biochim Biophys Acta 960:294–302

    Article  PubMed  CAS  Google Scholar 

  • Waterham HR, Wanders RJA (2000) Biochemical and genetic aspects of 7-dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome. Biochem Biophys Acta 1529:340–356

    Article  PubMed  CAS  Google Scholar 

  • Weingand KW, Daggy BP (1990) Quantification of high-density‐lipoprotein cholesterol in plasma from hamsters by differential precipitation. Clin Chem 36:575–576

    PubMed  CAS  Google Scholar 

  • Weingand KW, Daggy BP (1991) Effects of dietary cholesterol and fasting on hamster lipoprotein lipids. Eur J Clin Chem Clin Biochem 29:425–428

    PubMed  CAS  Google Scholar 

  • Wess G, Kramer W, Han XB, Bock K, Enhsen A, Glombik H, Baringhaus KH, Böger G, Urmann M, Hoffmann A, Falk E (1994) Synthesis and biological activity of bile acid-derived HMG-CoA reductase inhibitors. The role of the 21-methyl in recognition of HMG-CoA reductase and the ileal bile acid transport system. J Med Chem 37:3240–3246

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Bledsoe RK, Collins JL, Boggs R, Lambert MH, Miller AB, Moore J, McKee DD, Moore L, Nichols J, Parks D, Watson M, Wisely B, Willson TM (2003) X-ray crystal structure of the liver X receptor β ligand binding domain. Regulation by a histidine‐tryptophan twitch. J Biol Chem 278:27138–27143

    Article  PubMed  CAS  Google Scholar 

  • Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: From orphan receptors to drug discovery. J Med Chem 43:527–550

    Article  PubMed  CAS  Google Scholar 

  • Willy JP, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ (1995) LXR, a nuclear receptor that defined a distinct retinoid response pathway. Genes Dev 9:1022–1045

    Article  Google Scholar 

  • Windler E, Rücker W, Greeve J, Reimitz H, Greten H (1990) Influence of the acyl-coenzyme A:cholesterol‐acyltransferase inhibitor octimibate on cholesterol transport in rat mesenteric lymph. Arzneim Forsch/Drug Res 40:1108–1111

    CAS  Google Scholar 

  • Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1982) Tumor promoting phorbol esters stimulate C3b and C3b' receptor‐mediated phagocytosis in cultured human monocytes. J Exp Med 156:1149–1164

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Kitagawa S, Imaizumi N, Kunitomo M, Fujiwara M (1993) Enhancement of cholesterol deposition by dietary linoleic acid in cholesterol-fed mice: an animal model for primary screening of antiatherosclerotic agents. J Pharm Toxicol Meth 30:169–175

    Article  CAS  Google Scholar 

  • Yamamoto A, Takaishi S, Hara H, Nishikawa O, Yokoyama S, Yamamura T, Yamaguchi T (1986) Probucol prevents lipid storage in macrophages. Atherosclerosis 62:209–217

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Takeda K, Harada S, Nakata T, Azuma A, Sasaki S, Nakagawa M (2003) HMG-CoA reductase inhibitor enhances inducible nitric oxide synthase expression in rat vascular smooth muscle cell; involvement of the Rho/Rho kinase pathway. Atherosclerosis 166:213–222

    Article  PubMed  CAS  Google Scholar 

  • Yokota N, O'Donnell M, Daniels F, Burne-Taney M, Keane W, Kasiske B, Rabb H (2003) Protective effect of HMG CoA reductase inhibitor on experimental renal ischemia‐reperfusion injury. Am J Nephrol 23:13–17

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Shimano H, Yahagi N, Ide T, Amemiya-Kudo M, Matsuzaka Z, Nakakuki M, Tomita S, Okazaki H, Tamura Y, Izuka Y, Ohashi K, Takahashi A, Sone H, Osuka JL, Gotoda T, Ishibashi S, Yamada N (2002) Polyunsaturated fatty acids suppress sterol regulatory element‐binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR responsive elements. J Biol Chem 277:1705–1711

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H (1989) Studies with hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J Med Chem 32:421–428

    Article  PubMed  CAS  Google Scholar 

  • Yu L, York J, von Bergmann K, Cohen JC, Hobbs HH (2003) Stimulation of cholesterol excretion by liver X receptor agonist requires ATP-binding cassette transporter G5 and G8. J Biol Chem 15565–15570

    Google Scholar 

  • Zhang H, Basra HJK, Steinbrecher UP (1990) Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res 31:1361–1369

    PubMed  CAS  Google Scholar 

  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    Article  PubMed  CAS  Google Scholar 

  • Zilversmit DB (1972) A single blood sample dual isotope method for the measurement of cholesterol absorption in rats. Proc Soc Exp Biol Med 140:862–865

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Vogel, H. (2007). Anti-Atherosclerotic Activity. In: Vogel, H.G. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70995-4_14

Download citation

Publish with us

Policies and ethics