Skip to main content

Temperate Phages, Prophages, and Lysogeny

  • Reference work entry
  • First Online:
Bacteriophages

Abstract

Prophages form with their host a very special type of interaction called lysogeny. There they are able to help the host, but they are also able to kill their hosts, producing their own virion progeny during the process. The phage-host interaction itself is very complicated with many different mechanisms, some of which served as important bases for our understanding of molecular biology. Because of these mechanisms, some prophages are extensively studied and now are considered to be model organisms. Other prophages have caught our attention because they have managed to turn their hosts into deadly pathogens by delivering payloads of toxin genes along with genes encoding other bacterial virulence factors. Many prophages are also able to cross species borders, facilitate horizontal gene transfer, and otherwise give rise to the creation of bacteria, via lysogenization, with new capacities not necessarily observed before. Due to improvements in sequencing technologies, we are now discovering how widespread and important the interaction of prophages with their hosts is in nature. In this chapter some aspects of their biology, interactions with hosts, and contribution to pathogenesis is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abedon ST (2017) Commentary: communication between viruses guides lysis-lysogeny decisions. Front Microbiol 8:983

    PubMed  PubMed Central  Google Scholar 

  • Ackermann HW (1999) Tailed bacteriophages: the order Caudovirales. Adv Virus Res 51:135–201

    Google Scholar 

  • Adriaenssens EM, Wittmann J, Kuhn JH, et al (2018) Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 163(4):1125–1129. https://doi.org/10.1007/s00705-018-3723-z

  • Adriaenssens EM, Sullivan MB, Knezevic P, et al (2020) Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch Virol 165(5):1253–1260. https://doi.org/10.1007/s00705-020-04577-8

  • Altuvia S, Kornitzer D, Teff D, Oppenheim AB (1989) Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol 210:265–280

    CAS  PubMed  Google Scholar 

  • Avlund M, Dodd IB, Semsey S, Sneppen K, Sandeep KS (2009) Why do phage play dice? J Virol 83:11416–11420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827

    CAS  PubMed  Google Scholar 

  • Barksdale L, Arden SB (1974) Persisting bacteriophage infections, lysogeny, and phage conversion. Annu Rev Microbiol 28:265–299

    CAS  PubMed  Google Scholar 

  • Barondess JJ, Beckwith J (1995) bor gene of phage lambda, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J Bacteriol 177:1247–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bensing BA, Siboo IR, Sullam PM (2001a) Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage. Infect Immun 69(10):6186–6192. https://doi.org/10.1128/IAI.69.10.6186-6192.2001

  • Bensing BA, Rubens CE, Sullam PM (2001b) genetic loci of streptococcus mitis that mediate binding to human platelets. Infect Immun 69(3):1373–1380. https://doi.org/10.1128/IAI.69.3.1373-1380.2001

  • Bertani G (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani E, Six EW (1988) The P2-like phages and their parasite, P4. In: Calendar R (ed) The bacteriophages. Plenum Publishing Corporation, New York/London

    Google Scholar 

  • Betley MJ, Mekalanos JJ (1985) Staphylococcus enterotoxin A is encoded by a phage. Science 229:185–187

    CAS  PubMed  Google Scholar 

  • Blair JE, Carr M (1961) Lysogeny in staphylococci. J Bacteriol 82:984–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bokarewa MI, Jin T, Tarkowski A (2006) Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol 38(4):504–509. https://doi.org/10.1016/j.biocel.2005.07.005

  • Boyd EF, Brüssow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. TRENDS Microbiol 10(11):521–529

    CAS  PubMed  Google Scholar 

  • Broudy TB, Fischetti VA (2003) In vivo lysogenic conversion of Tox Streptococcus pyogenes to Tox+ with lysogenic streptococci or free phage. Infect Immun 71:3782–3786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brüssow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39:213–223

    Google Scholar 

  • Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    PubMed  PubMed Central  Google Scholar 

  • Campbell AM (1998) Prophages and cryptic prophages. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes. Springer, Boston

    Google Scholar 

  • Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann ML, Brüssow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424

    CAS  PubMed  Google Scholar 

  • Casjens S, Hendrix RW (2015) Bacteriophage lambda: early pioneer and still relevant. Virology 479–480:310–330

    PubMed  Google Scholar 

  • Chattoraj DK (2000) Control of plasmid DNA replication by iterons: no longer paradoxical. Mol Microbiol 37:467–476

    CAS  PubMed  Google Scholar 

  • Chattoraj DK, Inman RB (1974) Location of DNA ends in P2, 186, P4 and lambda bacteriophage heads. J Mol Biol 87(1):11–22

    CAS  PubMed  Google Scholar 

  • Chen Y, Golding I, Sawai S, Guo L, Cox EC (2005) Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol 3(7):e229

    PubMed  PubMed Central  Google Scholar 

  • Cruz JW, Rothenbacher FP, Maehigashi T, Lane WS, Dunham CM, Woychik NA (2014) Doc toxin is a kinase that inactivates elongation factor Tu. J Biol Chem 289:7788–7798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deghorain M, Van Melderen L (2012) The Staphylococci phages family: an overview. Viruses 4(12):3316–3335. https://doi.org/10.3390/v4123316

  • Dinu S, Damian M, Badell E, Dragomirescu CC, Guiso N (2014) New diphtheria toxin repressor types depicted in a Romanian collection of Corynebacterium diphtheriae isolates. J Basic Microbiol 54:1136–1139

    CAS  PubMed  Google Scholar 

  • Dokland T, Lindqvist BH, Fuller SD (1992) Image reconstruction from cryo-electron micrographs reveals the morphopoietic mechanism in the P2^P4 bacteriophage system. EMBO J 11:839–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dykhuizen D, Campbell JH, Rolfe BG (1978) The influences of a lambda prophage on the growth rate of Escherichia coli. Microbios 23(92):99–113

    CAS  PubMed  Google Scholar 

  • Edgar R, Rokney A, Feeney M et al (2008) Bacteriophage infection is targeted to cellular poles. Mol Microbiol 68(5):1107–1116. https://doi.org/10.1111/j.1365-2958.2008.06205.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541:488–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito D, Wilson JC, Scocca JJ (1997) Reciprocal regulation of the early promoter region of bacteriophage HP1 by the Cox and Cl proteins. Virology 234(2):267–276

    CAS  PubMed  Google Scholar 

  • Faruque SM, Rahman MM, Hasan AK, Nair GB, Mekalanos JJ, Sack DA (2001) Diminished diarrheal response to Vibrio cholerae strains carrying the replicative form of the CTX(Phi) genome instead of CTX(Phi) lysogens in adult rabbits. Infect Immun 69(10):6084–6090. https://doi.org/10.1128/IAI.69.10.6084-6090.2001

  • Faruque SM, Nair GB (2002) Molecular ecology of toxigenic Vibrio cholerae. Microbiol Immunol 46(2):59–66

    CAS  PubMed  Google Scholar 

  • Ferrer MD, Quiles-Puchalt N, Harwich MD, Tormo-Más MÁ, Campoy S, Barbé J, Lasa I, Novick RP, Christie GE, Penadés, JR (2011) RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria. Nucleic Acids Res 39(14):5866–5878. https://doi.org/10.1093/nar/gkr158

  • Finck-Barbancon V, Duportail G, Meunier O, Colin DA (1993) Pore formation by a two-component leukocidin from Staphylococcus aureus within the membrane of human polymorphonuclear leukocytes. Biochim Biophys Acta 1182:275–282

    CAS  PubMed  Google Scholar 

  • Fogg PC, Allison HE, Saunders JR, McCarthy AJ (2010) Bacteriophage lambda: a paradigm revisited. J Virol 84:6876–6879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fortier LC, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4(5):354–365

    PubMed  PubMed Central  Google Scholar 

  • Freeman VJ (1951) Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheria. J Bacteriol 61:675–688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E (2005) Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 332:284–294

    CAS  PubMed  Google Scholar 

  • Funnell BE, Slavcev RA (2004) Partition systems of bacterial plasmids. In: Funnell BE, Phillips GJ (eds) Plasmid biology. ASM Press, Washington, DC, pp 81–104

    Google Scholar 

  • Giladi H, Goldenberg D, Koby S, Oppenheim AB (1995) Enhanced activity of the bacteriophage l pL promoter at low temperature. Proc Natl Acad Sci U S A 92:2184–2188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goerke C, Wirtz C, Flückiger U, Wolz C (2006) Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol Microbiol 61:1673–1685. https://doi.org/10.1111/j.1365-2958.2006.05354.x

  • Golais F, Hollý J, Vítkovská J (2013) Coevolution of bacteria and their viruses. Folia Microbiol 58:177–186

    CAS  Google Scholar 

  • Goshorn SC, Schlievert PM (1989) Bacteriophage association of streptococcal pyrogenic exotoxin type C. J Bacteriol 171:3068–3073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470:421–443

    PubMed  Google Scholar 

  • Gruenig MC, Lu D, Won SJ, Dulberger CL, Manlick AJ, Keck JL, Cox MM (2011) Creating directed double-strand breaks with the Ref protein: a novel RecA-dependent nuclease from bacteriophage P1. J Biol Chem 286:8240–8251

    CAS  PubMed  Google Scholar 

  • Gutiérrez D, Adriaenssens EM, Martínez B et al (2014) Three proposed new bacteriophage genera of staphylococcal phages: “3alikevirus”, “77likevirus” and “Phietalikevirus”. Arch Virol 159:389–398. https://doi.org/10.1007/s00705-013-1833-1

  • Harshey RM (2014) Transposable phage Mu. Microbiol Spectr 2(5). https://doi.org/10.1128/microbiolspec.MDNA3-0007-2014

  • Hassan F, Kamruzzaman M, Mekalanos JJ, Faruque SM (2010) Satellite phage TLCΦ enables toxigenic conversion by CTX phage through dif site alteration. Nature 467:982–985

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helbin W, Polakowska K, Mie¸dzobrodzki J (2012) Phage-related virulence factors of Staphylococcus aureus. Postepy Mikrobiologii 51:291–298

    Google Scholar 

  • Hendrix RW (2002) Bacteriophage λ and its relatives. In: Streips UN, Yasbin RE (eds) Modern microbial genetics, 2nd edn. Wiley-Liss. https://doi.org/10.1002/047122197X.ch5

  • Herman C, Thevenet D, D’Ari R, Bouloc P (1997) The HflB protease of Escherichia coli degrades its inhibitor λ cIII. J Bacteriol 179:358–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoopes BC, McClure WR (1985) A cII-dependent promoter is located within the Q gene of bacteriophage lambda. Proc Natl Acad Sci U S A 82:3134–3138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:1511–1520

    PubMed  PubMed Central  Google Scholar 

  • Huang A, Friesen J, Brunton JL (1987) Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli. J Bacteriol 169:4308–4312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huggins AR, Sandine WE (1977) Incidence and properties of temperate bacteriophages induced from lactic streptococci. Appl Environ Microb 33:184–191

    Google Scholar 

  • Hynes WL, Hancock L, Ferretti JJ (1995) Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. Infect Immun 63(8):3015–3020. https://doi.org/10.1128/IAI.63.8.3015-3020.1995

  • Kaneko J, Kimura T, Narita S, Tomita T, Kamio Y (1998) Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage PVL carrying Panton-Valentine leukocidin genes. Gene 215(1):57–67

    CAS  PubMed  Google Scholar 

  • Karaolis DK, Somara S, Maneval DR Jr, Johnson JA, Kaper JB (1999) A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399:375–379

    CAS  PubMed  Google Scholar 

  • Kim EJ, Lee D, Moon SH, Lee CH, Kim DW (2014) CTX prophages in Vibrio cholerae O1 strains J. Microbiol Biotechnol 24:725–731

    CAS  Google Scholar 

  • Kim EJ, Yu HJ, Lee JH, Kim JO, Han SH, Yun CH, Chun J, Nair GB, Kim DW (2017) Replication of Vibrio cholerae classical CTX phage. Proc Natl Acad Sci U S A 114:2343–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo I, Sakurai S, Sarai Y, Futaki S (1975) Two serotypes of exfoliatin and their distribution in staphylococcal strains isolated from patients with scalded skin syndrome. J Clin Microbiol 1:397–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ladhani S, Joannou CL, Lochrie DP, Evans RW, Poston SM (1999) Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin Microbiol Rev 12:224–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamont I, Richardson H, Carter DR, Egan JB (1993) Genes for the establishment and maintenance of lysogeny by the temperate coliphage 186. J Bacteriol 175:5286–5288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2:63–76

    PubMed  Google Scholar 

  • Lehnherr H (2006) Bacteriophage P1. In: Calender R (ed) The bacteriophages. Oxford University Press, New York, pp 350–364

    Google Scholar 

  • Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter M-O, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of panton-valentine leukocidin–producing staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29(5):1128–1132. https://doi.org/10.1086/313461

  • Linderoth NA, Ziermann R, Haggard-Ljungquist E, Christie GE, Calendar R (1991) Nucleotide sequence of the DNA packaging and capsid synthesis genes of bacteriophage P2. Nucleic Acids Res 19(25):7207–7214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29(2):527–543. https://doi.org/10.1046/j.1365-2958.1998.00947.x

  • Liu T, Haggård-Ljungquist E (1999) The transcriptional switch of bacteriophage Wphi, a P2 related but heteroimmune coliphage. J Virol 73:9816–9826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Łobocka M, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yermolinsky MB, Blattner FR (2004) Genome of bacterophage P1. J Bacteriol 186:7032–7068

    PubMed  PubMed Central  Google Scholar 

  • Łoś M, Kuzio J, McConell MR, Kropinski AM, Węgrzyn G, Christie GE (2010) Lysogenic conversion in bacteria of importance to the food industry. In: Bacteriophages. ASM Press, Washington, DC, pp 157–198

    Google Scholar 

  • Magnuson R, Yarmolinsky MB (1998) Corepression of the P1 addiction operon by Phd and Doc. J Bacteriol 186:6342–6351

    Google Scholar 

  • McCabe BC, Pawlowski DR, Koudelka GB (2005) The bacteriophage 434 repressor dimer preferentially undergoes autoproteolysis by an intramolecular mechanism. J Bacteriol 187:5624–5630

    CAS  PubMed  PubMed Central  Google Scholar 

  • McShan WM, Tang Y-F, Ferretti JJ (1997) Bacteriophage T12 of Streptococcus pyogenes integrates into the gene encoding a serine tRNA. Mol Microbiol 23:719–728. https://doi.org/10.1046/j.1365-2958.1997.2591616.x

  • Merrell DS, Hava DL, Camilli A (2002) Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43:1471–1491

    CAS  PubMed  Google Scholar 

  • Muniesa M, de Simon M, Prats G, Ferrer D, Panella H, Jofre J (2003) Shiga toxin 2-converting bacteriophages associated with clonal variability in Escherichia coli O157:H7 strains of human origin isolated from a single outbreak. Infect Immun 71:4554–4562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muniesa M, Imamovic L, Jofre J (2011) Bacteriophages and genetic mobilization in sewage and faecally polluted environments. Microb Biotechnol 4(6):725–734

    PubMed  PubMed Central  Google Scholar 

  • Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T (1999) The complete nucleotide sequence of φCTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: impications for phage evolution and horizontal gene transfer via bacteriophages. Mol Microbiol 31:399–419

    CAS  PubMed  Google Scholar 

  • Nakayama K, Takashima K, Ishihara H, Shinomiya T, Kageyama M, Kanaya S, Ohnishi M, Murata T, Mori H, Hayashi T (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231

    CAS  PubMed  Google Scholar 

  • Neufing PJ, Shearwin KE, Egan JB (2001) Establishing lysogenic transcription in the temperate coliphage 186. J Bacteriol 183:2376–2379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson AS, Haggård-Ljungquist E (2007) Evolution of P2-like phages and their impact on bacterial evolution. Res Microbiol 158:311–317

    CAS  PubMed  Google Scholar 

  • Nilsson AS, Karlsson JL, Haggård-Ljungquist E (2004) Site-specific recombination links the evolution of P2-like coliphages and pathogenic enterobacteria. Mol Biol Evol 21(1):1–13

    CAS  PubMed  Google Scholar 

  • O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB (1984) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226:694–696

    PubMed  Google Scholar 

  • Ochman H, Selander RK (1984) Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157(2):690–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potrykus K, Węgrzyn G, Hernandez VJ (2002) Multiple mechanisms of transcription inhibition by ppGpp at the lambda pR promoter. J Biol Chem 277:43785–43791

    CAS  PubMed  Google Scholar 

  • Ptashne M (2004) A genetic switch: phage lambda revisited, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Ranquet C, Ariane TA, de Jong H, Maenhaut-Michel G, Geiselmann J (2005) Control of bacteriophage Mu lysogenic repression. J Mol Biol 353:186–195

    CAS  PubMed  Google Scholar 

  • Redfield RJ, Soucy SM (2018) Evolution of bacterial gene transfer agents. Front Microbiol 9:2527

    PubMed  PubMed Central  Google Scholar 

  • Rolfe B (1970) Lambda phage transduction of the bio A locus of Escherichia coli. Virology 42:643–661

    CAS  PubMed  Google Scholar 

  • Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, García E, Mitchell TJ (2009) Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 191(15):4854–4862. https://doi.org/10.1128/JB.01272-08

  • Rotman E, Amado L, Kuzminov A (2010) Unauthorized horizontal spread in the laboratory environment: the tactics of Lula, a temperate lambdoid bacteriophage of Escherichia coli. PLoS One 5(6):e11106

    PubMed  PubMed Central  Google Scholar 

  • Saha S, Haggård-Ljungquist E, Nordström K (1987) The Cox protein of bacteriophage P2 inhibits the formation of the repressor protein and autoregulates the early operon. EMBO J 6(10):3191–3199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi Y, Hayashi T, Kurokawa K, Nakayama K, Oshima K, Fujinaga Y, Ohnishi M, Ohtsubo E, Hattori M, Oguma K (2005) The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc Natl Acad Sci USA 102:17472–17477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shotland Y, Koby S, Teff D, Mansur N, Oren DA, Tatematsu K, Tomoyasu T, Kessel M, Bukau B, Ogura T, Oppenheim AB (1997) Proteolysis of the l CII regulatory protein by FtsH (HflB) of Escherichia coli. Mol Microbiol 24:1303–1310

    CAS  PubMed  Google Scholar 

  • Shotland Y, Shifrin A, Ziv T, Teff D, Koby S, Kobiler O, Oppenheim AB (2000) Proteolysis of bacteriophage λ CII by Escherichia coli FtsH (HflB). J Bacteriol 182:3111–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Słominska M, Neubauer P, Wegrzyn G (1999) Regulation of bacteriophage λ development by guanosine 5′-diphosphate-3′-diphosphate. Virology 262:431–441

    PubMed  Google Scholar 

  • Smith DL, Rooks DJ, Fogg PCM, Darby AC, Thomson NR, McCarthy AJ, Allison HE (2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genom 13(1):311

    CAS  Google Scholar 

  • Szalewska-Palasz A, Wróbel B, Wegrzyn G (1998) Rapid degradation of polyadenylated oop RNA. FEBS Lett 432:70–72

    CAS  PubMed  Google Scholar 

  • Tallent SM, Langston TB, Moran RG, Christie GE (2007) Transducing particles of staphylococcus aureus pathogenicity Island SaPI1 are comprised of helper phage-encoded proteins. J Bacteriol 189:7520–7524

    Google Scholar 

  • Ventura M, Bruttin A, Canchaya C, Brüssow H (2002) Transcription analysis of Streptococcus thermophilus phages in the lysogenic state. Virology 302:21–32

    CAS  PubMed  Google Scholar 

  • Ventura M, Canchaya C, Pridmore D, Berger B, Brussow H (2003a) Integration and distribution of Lactobacillus johnsonii prophages. J Bacteriol 185:4603–4608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura M, Canchaya C, Kleerebezem M, de Vos WM, Siezen RJ, Brüssow H (2003b) The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology 316:245–255

    CAS  PubMed  Google Scholar 

  • Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner PL, Livny J, Neely MN, Acheson DW, Friedman DI, Waldor MK (2002) Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol 44:957–970

    CAS  PubMed  Google Scholar 

  • Waldor MK, Rubin EJ, Pearson GDN, Kimsey H, Mekalanos JJ (1997) Regulation, replication, and integration functions of the Vibrio cholerae CTXΦ are encoded by regions RS2. Mol Microbiol 24:917–926

    CAS  PubMed  Google Scholar 

  • Walker DH, Anderson TF (1970) Morphological variants of coliphage P1. J Virol 5:765–782

    PubMed  PubMed Central  Google Scholar 

  • Weeks CR, Ferretti JJ (1984) The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect Immun 46:531–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Węgrzyn G, Węgrzyn A (2005) Genetic switches during bacteriophage l development. Progr Nucleic Acid Res Mol Biol 79:1–48

    Google Scholar 

  • Winkler KC, de Waart WJ, Grootsen C (1965) Lysogenic conversion of staphylococci to loss of β-toxin. J Gen Microbiol 39:321–333

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Hayashi T, Takami H, Nakasone K, Ohnishi M, Nakayama K, Yamada S, Komatsuzawa H, Sugai M (2000) Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol Microbiol 38:694–705

    CAS  PubMed  Google Scholar 

  • Yarmolinsky MB (2004) Bacteriophage P1 in retrospect and in prospect. J Bacteriol 186:7025–7028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarmolinsky M, Hoess R (2015) The legacy of Nat Sternberg: the genesis of Cre-lox technology. Annu Rev Virol 2:25–40

    CAS  PubMed  Google Scholar 

  • Yarmolinsky M, Sternberg N (1988) Bacteriophage Pl. In: Calendar R (ed) The bacteriophages, vol 1. Plenum Press, New York, pp 291–438

    Google Scholar 

  • Zasada AA (2013) Występowanie i chorobotwórczość dla człowieka potencjalnie toksynotwórczych maczugowców- Corynebacterium diphtheriae, Corynebacterium ulcerans i Corynebacterium pseudotuberculosis. Post Mikrobiol 52:201–209

    CAS  Google Scholar 

  • Zhou Y, Sugiyama H, Johnson EA (1993) Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl Environ Microbiol 59:3825–3831

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially financed by the Ministry of Science and Higher Education, Poland (Grant No. 0312/IP1/2011/71) and National Science Centre, Poland awarded on the basis of grant decision no. DEC-2011/01/B/NZ1/04404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Łoś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Łoś, J. et al. (2021). Temperate Phages, Prophages, and Lysogeny. In: Harper, D.R., Abedon, S.T., Burrowes, B.H., McConville, M.L. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-41986-2_3

Download citation

Publish with us

Policies and ethics