Skip to main content

Ab Initio Calculations

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 720 Accesses

Definition

Molecular orbital theory is an approach to solving the Schrödinger equation for the motion of electrons in molecules (as well as atoms). Such calculations are known as ab initio (from first principles) electronic structure calculations . The molecular orbitals are usually expressed as sums of atomic orbitals, and the rules of quantum mechanics including the Pauli exclusion principle are followed. The use of molecular orbital theory ranges from qualitative where it is used to provide a description of the electron occupancy in a molecule to explain experimental results from photoelectron spectroscopy and electronic spectroscopy to extremely quantitative with a focus on precise predictions of molecular energetics and spectroscopic parameters.

Overview

Molecules contain electrons which have a low enough mass that the laws of quantum mechanics must be used to describe them if the electronic structure of an atom or molecule needs to be studied. In order to predict the energy of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adler, T. B., Knizia, G., and Werner, H.-J., 2007. A simple and efficient CCSD(T)-F12 approximation. Journal of Chemical Physics, 127, 221106 (4 pages).

    Article  Google Scholar 

  • Almlöf, J., and Taylor, P. R., 1991. Atomic natural orbital (ANO) basis sets for quantum chemical calculations. Advances in Quantum Chemistry, 22, 301–373.

    Article  Google Scholar 

  • Bartlett, R. J., and Musial, M., 2007. Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79, 291–352.

    Article  Google Scholar 

  • Borden, W. T., Handy, N. C., Schaefer, H. F., and Davidson, E. R., 2002. Molecular Quantum Mechanics: The Right Answer for the Right Reason: The Proceedings of an International Conference in Honor of Professor Ernest R. Davidson, held at the University of Washington, Seattle, Washington, USA, 21–25 July 2001. London: Taylor & Francis.

    Google Scholar 

  • Dewar, M. J. S., and Thiel, W., 1977. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, 99, 4899–4907.

    Article  Google Scholar 

  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P., 1985. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107, 3902–3909.

    Article  Google Scholar 

  • Dixon, D. A., Feller, D., and Peterson, K. A., 2012. A practical guide to reliable first principles computational thermochemistry predictions across the periodic table. In Ralph, A. W. (ed.), Annual Reports in Computational Chemistry. Amsterdam: Elsevier, Vol. 8, pp. 1–28.

    Google Scholar 

  • Dolg, M. (ed.), 2015. Computational Methods in Lanthanide and Actinide Chemistry. New York: Wiley.

    Google Scholar 

  • Dunning, T. H., Jr., 1989. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics, 90, 1007–1023.

    Article  Google Scholar 

  • EMSL basis set library: https://bse.pnl.gov/bse/portal

  • Feller, D., 1996. The role of databases in support of computational chemistry calculations. Journal of Computational Chemistry, 17, 1571–1586.

    Article  Google Scholar 

  • Feller, D., 2015. A statistical electronic structure calibration study of the CCSD(T*)- F12b method for atomization energies. Journal of Physical Chemistry A, 119, 7375–7387.

    Article  Google Scholar 

  • Feller, D., Peterson, K. A., and Hill, J. G., 2011. On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. Journal of Chemical Physics, 135, 044102 (18 pages).

    Article  Google Scholar 

  • Feller, D., Peterson, K. A., and Dixon, D. A., 2012. Further benchmarks of a composite, convergent, statistically calibrated coupled cluster based approach for thermochemical and spectroscopic studies. Molecular Physics, 110, 2381–2399.

    Article  Google Scholar 

  • Foresman, J. B., and Frisch, Æ., 2015. Exploring Chemistry with Electronic Structure Methods, 3rd edn. Wallingford: Gaussian, Inc.

    Google Scholar 

  • Grant, G. H., and Richards, W. G., 1995. Computational Chemistry. Oxford: Oxford University Press.

    Google Scholar 

  • Gutowski, K. E., and Dixon, D. A., 2006. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution. Journal of Physical Chemistry A, 110, 8840–8856.

    Article  Google Scholar 

  • Hehre, W. J., Radom, L., Schleyer, P. V. R., and Pople, J. A., 1986. Ab Initio Molecular Orbital Theory. New York: Wiley-Interscience.

    Google Scholar 

  • Helgaker, T., Klopper, W., and Tew, D. P., 2008. Quantitative quantum chemistry. Molecular Physics, 106, 2107–2143.

    Article  Google Scholar 

  • Hemming, N. G., and Hanson, G. N., 1992. Boron isotopic composition and concentration in modern marine carbonates. Geochimica et Cosmochimica Acta, 56, 537–554.

    Article  Google Scholar 

  • Hess, B. A., and Dolg, M., 2002. Relativistic Quantum Chemistry with Pseudopotentials and Transformed Hamiltonian. Chichester: Wiley. Wiley Series in Theoretical Chemistry, Vol. 57.

    Google Scholar 

  • Hirst, D. M., 1990. A Computational Approach to Chemistry. Oxford: Blackwell Scientific.

    Google Scholar 

  • Kendall, R. A., Dunning, T. H., Jr., and Harrison, R. J., 1992. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 96, 6796–6806.

    Article  Google Scholar 

  • Klamt, A., 2005. Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Amsterdam: Elsevier.

    Google Scholar 

  • Klamt, A., and Schümann, G., 1993. A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of Chemical Society Perkin Transaction, 2, 799–805.

    Article  Google Scholar 

  • Knizia, G., Adler, T. B., and Werner, H.-J., 2009. Simplified CCSD(T)-F12 methods: theory and benchmarks. Journal of Chemical Physics, 130, 054104 (20 pages).

    Article  Google Scholar 

  • Küchle, W., Dolg, M., Stoll, H., Preuss, H. Pseudopotentials of the Stuttgart/Dresden Group 1998 (Revision: Tue Aug 11, 1998). http://www.theochem.uni-stuttgart.de/pseudopotentiale

  • Kutzelnigg, W., 1985. The r12-dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theoretica Chimica Acta, 68, 445–469.

    Article  Google Scholar 

  • Levine, I., 2014. Quantum Chemistry, 7th edn. New York: Pearson.

    Google Scholar 

  • Lowe, J. P., and Peterson, K. A., 2006. Quantum Chemistry, 3rd edn. Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Marenich, A. V., Cramer, C. J., and Truhlar, D. G., 2009. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Journal of Physical Chemistry B, 113, 6378–6396.

    Article  Google Scholar 

  • Møller, C., and Plesset, M. S., 1934. Note on the approximation treatment for many-electron systems. Physics Review, 46, 618–622.

    Article  Google Scholar 

  • Neese, F., and Valeev, E. F., 2011. Revisiting the atomic natural orbital approach for basis sets: robust systematic basis sets for explicitly correlated and conventional correlated ab initio methods? Journal of Chemical Theory and Computation, 7, 33–43.

    Article  Google Scholar 

  • Peterson, K., 2007. A. Gaussian basis sets exhibiting systematic convergence to the complete basis set limit, Chapt. 11. In Spellmeyer, D. C., and Wheeler, R. A. (eds.), Annual Reports in Computational Chemistry. Amsterdam: Elsevier, Vol. 3, pp. 195–206.

    Chapter  Google Scholar 

  • Peterson, K. A., 2015. Correlation consistent basis sets for actinides; I. The Th and U atoms. Journal of Chemical Physics, 142, 074105 (14 pages).

    Article  Google Scholar 

  • Peterson, K. A. http://tyr0.chem.wsu.edu/~kipeters/basis.html

  • Peterson, K. A., Feller, D., and Dixon, D. A., 2012a. Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theoretical Chemistry Accounts, 131, 1–20.

    Article  Google Scholar 

  • Peterson, K. A., Dixon, D. A., and Stoll, H., 2012b. The use of explicitly correlated methods on XeF6 predicts a C3v minimum with a sterically active, free valence electron pair on Xe. Journal of Physical Chemistry A, 116, 9777–9782.

    Article  Google Scholar 

  • Pople, J. A., Binkley, J. S., and Seeger, R., 1976. Theoretical models incorporating electron correlation. International Journal of Quantum Chemistry Symposium, 10, 1–19.

    Article  Google Scholar 

  • Pykkö, P., and Descleaux, J. P., 1979. Relativity and the periodic system of elements. Accounts of Chemical Research, 12(8), 276–281.

    Article  Google Scholar 

  • Reiher, M., 2012. Relativistic Douglas–Kroll–Hess theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 139–149.

    Google Scholar 

  • Rustad, J. R., Bylaska, E. J., Jackson, V. E., and Dixon, D. A., 2010. Calculation of boron-isotope fractionation between B(OH)3(aq) and B(OH)4 −(aq). Geochimica et Cosmochimica Acta, 74, 2843–2850.

    Article  Google Scholar 

  • Schuchardt, K. L., Didier, B. T., Elsethagen, T., Sun, L., Gurumoorthi, V., Chase, J., Li, J., and Windus, T. L., 2007. Basis set exchange: a community database for computational sciences. Journal of Chemical Information and Modeling, 47, 1045–1052.

    Article  Google Scholar 

  • Stewart, J. J. P., 2013. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modelling, 19, 1–32.

    Article  Google Scholar 

  • Tomasi, J., Mennucci, B., and Cammi, R., 2005. Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3094.

    Article  Google Scholar 

  • Wilson, S., 1988. Methods in Computational Chemistry. New York: Plenum Press. Relativistic Effects in Atoms and Molecules, Vol. 2.

    Google Scholar 

  • Yang, J., Hu, W., Usvyat, D., Matthews, D., Schuetz, M., and Chan, G. K.-L., 2014. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science, 345, 640–643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Dixon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Dixon, D. (2016). Ab Initio Calculations. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics