Skip to main content

Patient-Specific Total Knee Arthroplasty

  • Reference work entry
  • First Online:
Minimally Invasive Surgery in Orthopedics

Abstract

Patient-specific instrumentation (PSI) is a computer navigation technology that leverages rapid prototyping as a way to remove traditional computer navigation from the surgical process. Instead, the computer navigation is done in the planning phase of a total knee arthroplasty (TKA) and is based on data from the patient’s preoperative MRI or CT scan. This “pre-navigation” aims to improve the accuracy of bony resection and component alignment without the steep learning curve and time required for traditional intraoperative computer navigation.

During pre-navigation, an engineer and a surgeon collaborate to design and manufacture single-use custom cutting guides. Using these guides, precision and accuracy have been shown to be at least equivalent to conventional cutting guides, without the additional equipment and steps of either traditional or computer-navigated TKA. Cost has been a concern, with the required MRI and CT scans reducing the economic incentive to the technology’s widespread adoption.

By simplifying navigation and reducing instrument trays and prosthesis inventory, PSI has the potential to improve operating room efficiency. By reducing surgical operating time and intraoperative bleeding beyond conventional instrumentation, it is hoped that PSI guides will be a major factor in reducing length of hospital stay and promoting earlier return to function.

As with all TKA surgery, implant position should be combined with vigilant attention to ligament balancing and tensioning of the surrounding soft-tissue structures. While PSI aims to optimize the bony resections based on static anatomy, it does not yet have the ability to account for the soft-tissue envelope and its complex dynamics around the knee. Occasionally adjustments in size, position, rotation, and orientation of the guides are needed to achieve this ideal interplay. Various techniques are presented in this chapter which may guide the surgeon in the use and adjustment of PSI. At any point in time, conventional cutting guides can replace PSI guides if there is a concern about fit, bony resection or alignment. With the amount of adjustment possible with PSI, the technology has proven to be a very powerful method of primary knee reconstruction and can be used in nearly every circumstance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–5.

    Article  PubMed  Google Scholar 

  2. Bernstein J, Derman P. Dramatic increase in total knee replacement utilization rates cannot be fully explained by a disproportionate increase among younger patients. Orthopedics. 2014;37(7):e656–9.

    Article  PubMed  Google Scholar 

  3. Losina E, Thornhill TS, Rome BN, Wright J, Katz JN. The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. J Bone Joint Surg Am. 2012;94(3):201–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Font-Rodriguez DE, Scuderi GR, Insall JN. Survivorship of cemented total knee arthroplasty. Clin Orthop Relat Res. 1997;345:79–86.

    Article  PubMed  Google Scholar 

  5. Nieuwenhuijse MJ, Nelissen RG, Schoones JW, Sedrakyan A. Appraisal of evidence base for introduction of new implants in hip and knee replacement: a systematic review of five widely used device technologies. BMJ. 2014;349:g5133.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sikorski JM. Alignment in total knee replacement. J Bone Joint Surg. 2008;90(9):1121–7.

    Article  CAS  Google Scholar 

  7. Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA. The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am. 2011;93(17):1588–96.

    Article  PubMed  Google Scholar 

  8. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg. 1991;73(5):709–14.

    CAS  Google Scholar 

  9. Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, et al. Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res. 2004;428:26–34.

    Article  PubMed  Google Scholar 

  10. Hull CW. Apparatus for production of three-dimensional objects by stereolithography. USA; US4575330 A, 1986.

    Google Scholar 

  11. Krishnan SP, Dawood A, Richards R, Henckel J, Hart AJ. A review of rapid prototyped surgical guides for patient-specific total knee replacement. J Bone Joint Surg. 2012;94(11):1457–61.

    Article  CAS  Google Scholar 

  12. Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G, et al. Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res. 1998;354:28–38.

    Article  PubMed  Google Scholar 

  13. Christie MJ, Barrington SA, Brinson MF, Ruhling ME, DeBoer DK. Bridging massive acetabular defects with the triflange cup: 2- to 9-year results. Clin Orthop Relat Res. 2001;393:216–27.

    Article  PubMed  Google Scholar 

  14. Joshi AB, Lee J, Christensen C. Results for a custom acetabular component for acetabular deficiency. J Arthroplasty. 2002;17(5):643–8.

    Article  PubMed  Google Scholar 

  15. Ast MP, Nam D, Haas SB. Patient-specific instrumentation for total knee arthroplasty: a review. Orthop Clin North Am. 2012;43(5):e17–22.

    Article  PubMed  Google Scholar 

  16. White D, Chelule KL, Seedhom BB. Accuracy of MRI vs CT imaging with particular reference to patient specific templates for total knee replacement surgery. Int J Med Robot. 2008;4(3):224–31.

    Article  CAS  PubMed  Google Scholar 

  17. Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res. 1994;299:153–6.

    PubMed  Google Scholar 

  18. Bardakos N, Cil A, Thompson B, Stocks G. Mechanical axis cannot be restored in total knee arthroplasty with a fixed valgus resection angle: a radiographic study. J Arthroplasty. 2007;22(6 Suppl 2):85–9.

    Article  PubMed  Google Scholar 

  19. Cates HE, Ritter MA, Keating EM, Faris PM. Intramedullary versus extramedullary femoral alignment systems in total knee replacement. Clin Orthop Relat Res. 1993;286:32–9.

    PubMed  Google Scholar 

  20. Dennis DA, Channer M, Susman MH, Stringer EA. Intramedullary versus extramedullary tibial alignment systems in total knee arthroplasty. J Arthroplasty. 1993;8(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  21. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty. 2007;22(8):1097–106.

    Article  PubMed  Google Scholar 

  22. Reed MR, Bliss W, Sher JL, Emmerson KP, Jones SM, Partington PF. Extramedullary or intramedullary tibial alignment guides: a randomised, prospective trial of radiological alignment. J Bone Joint Surg. 2002;84(6):858–60.

    Article  CAS  Google Scholar 

  23. Church JS, Scadden JE, Gupta RR, Cokis C, Williams KA, Janes GC. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg. 2007;89(4):481–5.

    Article  CAS  Google Scholar 

  24. Dorr LD, Merkel C, Mellman MF, Klein I. Fat emboli in bilateral total knee arthroplasty. Predictive factors for neurologic manifestations. Clin Orthop Relat Res. 1989;248:112–8, discussion 8–9.

    PubMed  Google Scholar 

  25. Burnett RS, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res. 2013;471(1):264–76.

    Article  PubMed  Google Scholar 

  26. Cheng T, Zhang G, Zhang X. Imageless navigation system does not improve component rotational alignment in total knee arthroplasty. J Surg Res. 2011;171(2):590–600.

    Article  PubMed  Google Scholar 

  27. Nam D, Maher PA, Rebolledo BJ, Nawabi DH, McLawhorn AS, Pearle AD. Patient specific cutting guides versus an imageless, computer-assisted surgery system in total knee arthroplasty. Knee. 2013;20(4):263–7.

    Article  PubMed  Google Scholar 

  28. Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A, et al. Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am. 2007;89(2):261–9.

    Article  PubMed  Google Scholar 

  29. Sharareh B, Schwarzkopf R. Review article: patient-specific versus standard instrumentation for total knee arthroplasty. J Orthop Surg. 2015;23(1):100–6.

    Google Scholar 

  30. Jiang J, Kang X, Lin Q, Teng Y, An L, Ma J, et al. Accuracy of patient-specific instrumentation compared with conventional instrumentation in total knee arthroplasty. Orthopedics. 2015;38(4):e305–13.

    Article  PubMed  Google Scholar 

  31. Noble Jr JW, Moore CA, Liu N. The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty. 2012;27(1):153–5.

    Article  PubMed  Google Scholar 

  32. Renson L, Poilvache P, Van den Wyngaert H. Improved alignment and operating room efficiency with patient-specific instrumentation for TKA. Knee. 2014;21(6):1216–20.

    Article  PubMed  Google Scholar 

  33. Nam D. Patient-specific instrumentation (PSI) in total knee arthroplasty (TKA). In: Affatato S, editor. Surgical techniques in total knee arthroplasty and alternative procedures. 1st ed. Sawston: Woodhead Publishing; 2014. p. 207–27.

    Google Scholar 

  34. Thienpont E, Bellemans J, Delport H, Van Overschelde P, Stuyts B, Brabants K, et al. Patient-specific instruments: industry’s innovation with a surgeon’s interest. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2227–33.

    Article  PubMed  Google Scholar 

  35. Kalairajah Y, Cossey AJ, Verrall GM, Ludbrook G, Spriggins AJ. Are systemic emboli reduced in computer-assisted knee surgery? A prospective, randomised, clinical trial. J Bone Joint Surg. 2006;88(2):198–202.

    Article  CAS  Google Scholar 

  36. Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP. Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2206–12.

    Article  CAS  PubMed  Google Scholar 

  37. Pietsch M, Djahani O, Zweiger C, Plattner F, Radl R, Tschauner C, et al. Custom-fit minimally invasive total knee arthroplasty: effect on blood loss and early clinical outcomes. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2234–40.

    Article  CAS  PubMed  Google Scholar 

  38. Abane L, Anract P, Boisgard S, Descamps S, Courpied JP, Hamadouche M. A comparison of patient-specific and conventional instrumentation for total knee arthroplasty: a multicentre randomised controlled trial. Bone Joint J. 2015;97-B(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  39. Alfonso DT, Toussaint RJ, Alfonso BD, Strauss EJ, Steiger DT, Di Cesare PE. Nonsurgical complications after total hip and knee arthroplasty. Am J Orthop. 2006;35(11):503–10.

    PubMed  Google Scholar 

  40. Bierbaum BE, Callaghan JJ, Galante JO, Rubash HE, Tooms RE, Welch RB. An analysis of blood management in patients having a total hip or knee arthroplasty. J Bone Joint Surg Am. 1999;81(1):2–10.

    CAS  PubMed  Google Scholar 

  41. Rosencher N, Kerkkamp HE, Macheras G, Munuera LM, Menichella G, Barton DM, et al. Orthopedic Surgery Transfusion Hemoglobin European Overview (OSTHEO) study: blood management in elective knee and hip arthroplasty in Europe. Transfusion. 2003;43(4):459–69.

    Article  PubMed  Google Scholar 

  42. Pietsch M, Djahani O, Hochegger M, Plattner F, Hofmann S. Patient-specific total knee arthroplasty: the importance of planning by the surgeon. Knee Surg Sports Traumatol Arthrosc. 2013;21(10):2220–6.

    Article  CAS  PubMed  Google Scholar 

  43. Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon-directed changes. Clin Orthop Relat Res. 2013;471(1):169–74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Chow, J.C., Torre, P.K.D. (2016). Patient-Specific Total Knee Arthroplasty. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, Cham. https://doi.org/10.1007/978-3-319-34109-5_124

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34109-5_124

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34107-1

  • Online ISBN: 978-3-319-34109-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics