Skip to main content

IPMCs as EAPs: Applications

  • Living reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

IPMC actuators have number of advantages for the applications such as low drive voltage (less than 3 V), relatively high response (100 Hz), large displacement, soft material, capability of activation in water or in wet condition, possibility to work in dry condition, durability, and easy to miniaturize. In recent years, a great number of applications based on the IPMCs have been carried out by many workers. In this chapter, IPMC research on biomedical applications, biomimetic robotics, sensor/actuator integration, and energy harvesting is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelnour K, Stinchcombe A, Porfiri M, Zhang J, Childress S (2012) Wireless powering of ionic polymer metal composites toward hovering microswimmers. IEEE/ASME Trans Mech 17(5):924–935

    Article  Google Scholar 

  • Anand SV, Arvind K, Bharath P, Mahapatra DR (2010) Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes. Smart Mater Struct 19(4):045026

    Article  Google Scholar 

  • Arena P, Bonomo C, Fortuna L, Frasca M, Graziani S (2006) Design and control of an IPMC wormlike robot. IEEE Trans Syst Man Cybern B Cybern 36(5):1044–1052

    Article  Google Scholar 

  • Aureli M, Kopman V, Porfiri M (2010a) Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans Mech 15(4):603–614

    Article  Google Scholar 

  • Aureli M, Prince C, Porfiri M, Peterson SD (2010b) Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater Struct 19(1):015003

    Article  Google Scholar 

  • Aureli M, Pagano C, Porfiri M (2012) Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids. J Appl Phys 111(12):124915

    Article  Google Scholar 

  • Azuma A (1992) The biokinetics of flying and swimming. Springer, Tokyo

    Book  Google Scholar 

  • Bar-Cohen Y (2003) From the editor. In: World wide electro active polymers newsletter. 5(1). http://ndeaa.jpl.nasa.gov/nasa-nde/newsltr/WW-EAP_Newsletter5-1.pdf. Accessed 21 June 2014

  • Bar-Cohen Y, Breazeal C (eds) (2003) Biologically inspired intelligent robots. SPIE Press, Washington, DC

    Google Scholar 

  • Bonomo C, Fortuna L, Giannone P, Graziani S, Strazzeri S (2006) A model for ionic polymer metal composites as sensors. Smart Mater Struct 15:749–758

    Article  Google Scholar 

  • Brufau-Penella J, Puig-Vidal M, Giannone P, Graziani S, Strazzeri S (2008) Characterization of the harvesting capabilities of an ionic polymer-metal composite device. Smart Mater Struct 17(1):015009

    Article  Google Scholar 

  • Cellini F, Cha Y, Porfiri M (2014a) Energy harvesting from fluid-induced buckling of ionic polymer metal composites. J Int Mater Syst Struct 25(12):1496–1510

    Article  Google Scholar 

  • Cellini F, Intartaglia C, Soria L, Porfiri M (2014b) Effect of hydrodynamic interaction on energy harvesting in arrays of ionic polymer metal composites vibrating in a viscous fluid. Smart Mater Struct 23(4):045015

    Article  Google Scholar 

  • Cha Y, Phan CN, Porfiri M (2012) Energy exchange during slamming impact of an ionic polymer metal composite. Appl Phys Lett 101(9):094103

    Article  Google Scholar 

  • Cha Y, Verotti M, Walcott H, Peterson SD, Porfiri M (2013a) Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer-metal composites. Bioinspir Biomim 8(3):036003

    Google Scholar 

  • Cha Y, Shen L, Porfiri M (2013b) Energy harvesting from underwater torsional vibrations of a patterned ionic polymer metal composite. Smart Mater Struct 22(5):055027

    Google Scholar 

  • Cha Y, Cellini F, Porfiri M (2013c) Electrical impedance controls mechanical sensing in ionic polymer metal composites. Phys Rev E 88(6):062603

    Google Scholar 

  • Chang Y, Kim W (2013) Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs. IEEE/ASME Trans Mech 18(2):547–555

    Article  Google Scholar 

  • Cha Y, Porfiri M (2014) Mechanics and electrochemistry of ionic polymer metal composites. J Mech Phys Solids 71:156–178.

    Article  Google Scholar 

  • Chen Z, Shatara S, Tan X (2010) Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Trans Mech 15(3):448–459

    Article  Google Scholar 

  • Chen Z, Uma T, Bart-Smith H (2012) Bio-inspired robotic manta ray powered by ionic polymer-metal composite artificial muscles. Int J Smart Nano Mater 3(4):296–308

    Article  Google Scholar 

  • Cheng J, Pedley T, Altringham J (1998) A continuous dynamic beam model for swimming fish. Phil Trans R Soc B 353(1371):981–997

    Article  Google Scholar 

  • Chu W, Lee K, Song S, Han M, Lee J, Kim H, Kim M, Park Y, Cho K, Ahn S (2012) Review of biomimetic underwater robots using smart actuators. Int J Precis Eng Manufact 13(7):1281–1292

    Article  Google Scholar 

  • Dabiri JO (2007) Renewable fluid dynamic energy derived from aquatic animal locomotion. Bioinspir Biomim 2(3):L1

    Article  Google Scholar 

  • Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, Chichester

    Book  Google Scholar 

  • Fang B-K, Lin C-CK JM-S (2010) Development of sensing/actuating ionic polymer-metal composite (IPMC) for active guide-wire system. Sens Actuators A 158:1–9

    Article  Google Scholar 

  • Farinholt K, Leo D-J (2004) Modeling of electromechanical charge sensing in ionic polymer transducers. Mech Mater 36:421–433

    Article  Google Scholar 

  • Fukuda K, Sekitani T, Zschieschang U et al (2011) A 4 V operation, flexible Braille display using organic transistors, carbon nanotube actuators, and static random-access memory. Adv Funct Mater 21:4019–4027

    Article  Google Scholar 

  • Giacomello A, Porfiri M (2011) Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J Appl Phys 109(8):084903

    Article  Google Scholar 

  • Guo S, Fukuda T et al (1995) Micro active guide wire catheter using ICPF actuator. In: Proceeding of 1995 IEEE/RSJ international conference on intelligent robots and systems (IROS 95), vol 2, Pittsburgh. pp 172–177

    Google Scholar 

  • Guo S, Fukuda T et al (1997) Development of the micro pump using ICPF actuator. In: Proceeding of 1997 I.E. international conference on robotics and automation, Albuquerque, pp 266–271

    Google Scholar 

  • Guo S, Fukuda T, Asaka K (2003) A new type of fish-like underwater microrobot. IEEE/ASME Trans Mech 8(1):136–141

    Article  Google Scholar 

  • Guo S, Shi L, Xiao N, Asaka K (2012) A biomimetic underwater microrobot with multifunctional locomotion. Robot Autonom Syst 60:1472–1483

    Article  Google Scholar 

  • Hu J, Cha Y, Porfiri M, Peterson SD (2014) Energy harvesting from a vortex ring impinging on an annular ionic polymer metal composite. Smart Mater Struct 23(7):074014

    Article  Google Scholar 

  • Jeon JH, Yeom SW, Oh IK (2008) Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating. Compos A 39(4):588–596

    Article  Google Scholar 

  • Jo C, Pugal D, Oh IK, Kim KJ, Asaka K (2013) Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog Polym Sci 38(7):1037–1066

    Article  Google Scholar 

  • Kamamichi N, Yamakita M, Asaka K, Luo Z (2006) A snake-like swimming robot using IPMC actuator/sensor. In: Proceedings 2006 I.E. international conference robotics and automation, ICRA 2006. Orland, Florida, pp 1812–1817

    Google Scholar 

  • Kato Y, Sekitani T, Takamiya M et al (2007) Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators. IEEE Trans Electron Devices 54:202–209

    Article  Google Scholar 

  • Kim B, Kim D, Jung J, Park J (2005) A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators. Smart Mater Struct 14:1579–1585

    Article  Google Scholar 

  • Kim K, Tan X, Choi H, Pugal D (2013) Biomimetic robotic artificial muscles. World Scientific Publishing. Singapore

    Book  Google Scholar 

  • Kohler NE, Casey JG, Turner PA (1995) Length-weight relationships for 13 species of sharks from the western North Atlantic. Fish Bull 93(2):412–418

    Google Scholar 

  • Konyo M, Tadokoro S, Asaka K (2007) Applications of ionic polymer-metal composites: multiple-dof devices using soft actuators and sensor. In: Kim KJ, Tadokoro S (eds) Electroactive polymers for robotic applications: artificial muscles and sensors. Springer, London, pp 227–262

    Chapter  Google Scholar 

  • Kruusamae K, Brunetto P, Punning A, Kodu M, Jaaniso R, Graziani S, Fortuna L, Aabloo A (2011) Electromechanical model for a self-sensing ionic polymer–metal composite actuating device with patterned surface electrodes. Smart Mater Struct 20:124001

    Article  Google Scholar 

  • Lee S, Kim KJ (2006) Design of IPMC actuator-driven valve-less micropump and its flow rate estimation at low Reynolds numbers. Smart Mater Struct 15:1103–1109

    Article  Google Scholar 

  • Lee J, Yim W, Bae C, Kim K (2012) Wireless actuation and control of ionic polymer-metal composite actuator using a microwave link. Int J Smart Nano Mater 3(4):244–262

    Article  Google Scholar 

  • Lepora N, Verschure P, Prescott T (2013) The state of the art in biomimetics. Bioinspir Biomim 8:013001

    Article  Google Scholar 

  • Lighthill M (1960) Note on the swimming of slender fish. J Fluid Mechanics 9:305–317

    Article  Google Scholar 

  • Mojarrad M, Shahinpoor M (1997a) Biomimetic robotic propulsion using polymeric artificial muscles. In: Proceedings of the 1997 I.E. international conference on robotics and automation, ICRA 1997. Albuquerque, New Mexico, pp 2152–2157

    Google Scholar 

  • Mojarrad M, Shahinpoor M (1997b) Ion-exchange–metal composite sensor films. In: Proceedings of SPIE, Smart structures and materials, smart sensing, processing, and instrumentation, 3042. San Diego, California, pp 52–60

    Google Scholar 

  • Najem J, Sarles S, Akle B, Leo D (2012) Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater Struct 21:094026

    Article  Google Scholar 

  • Nakabo Y, Mukai T, Asaka K (2007) Biomimetic soft robots using IPMC. In: Kim K, Tadokoro S (eds) Electroactive polymers for robotics applications. Springer, London, pp 165–198

    Chapter  Google Scholar 

  • Nakadoi H, Sera A, Yamakita M, Asaka K, Luo Z-W, Ito K (2007) Integrated actuator-sensor system on patterned IPMC film: consideration of electronic interference. In: Proceedings of IEEE international conference on mechatronics. Kumamoto, Japan

    Google Scholar 

  • Nam D-N-C, Ahn K-K (2014) Modeling and control of a self-sensing polymer metal composite actuator. Smart Mater Struct 23:025025

    Article  Google Scholar 

  • Newbury K-M, Leo D-J (2003) Linear electromechanical model of ionic polymer transducers – part I: model development. J Intell Mater Syst Struct 14:333–342

    Article  Google Scholar 

  • Nguyen TT, Goo NS, Nguyen VK, Yoo Y, Park S (2008) Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm. Sens Actuators A 141:640–648

    Article  Google Scholar 

  • Oguro K, Fujiwara N, Asaka K, et al. (1999) Polymer electrolyte actuator with gold electrodes. In: Bar-Cohen Y (ed) Proceeding of the SPIE 6th annual international symposium on smart structures and materials, Newport Beach, pp 64–71

    Google Scholar 

  • Palmre V, Hubbard J, Fleming M, Pugal D, Kim S, Kim K, Leang K (2013) An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater Struct 22:014003

    Article  Google Scholar 

  • Peterson SD, Porfiri M (2012) Energy exchange between a vortex ring and an ionic polymer metal composite. Appl Phys Lett 100(11):114102

    Article  Google Scholar 

  • Phan CN, Aureli M, Porfiri M (2013) Finite amplitude vibrations of cantilevers of rectangular cross sections in viscous fluids. J Fluid Struct 40:52–69

    Article  Google Scholar 

  • Porfiri M, Peterson SD (2013) Energy harvesting from fluids using ionic polymer metal composites. In: Elvin N, Erturk A (eds) Advances in energy harvesting methods. Springer, New York, pp 221–240

    Chapter  Google Scholar 

  • Punning A, Anton M, Kruusmaa M, Aabloo A (2004) A biologically inspired ray-like underwater robot with electroactive polymer pectoral fins. In: Proceedings of the international IEEE conference mechatronics and robotics. Aachen, pp 241–245

    Google Scholar 

  • Punning A, Kruusmaa M, Aabloo A (2007) A self-sensing ion conducting polymer metal composite (IPMC) actuator. Sens Actuators A 136:656–664

    Article  Google Scholar 

  • Roper D, Sharma S, Sutton R, Culverhouse P (2011) A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. In: Proceedings of institution of mechanical engineers, Part M: J. Engineering for the Maritime Environment, vol 225, pp 77–96. doi:10.1177/1475090210397438

    Google Scholar 

  • Sareh S, Rossiter J, Conn A, Drescher K, Goldstein RE (2012) Swimming like algae: biomimetic soft artificial cilia. J R Soc Interface 10:20120666

    Article  Google Scholar 

  • Shahinpoor M, Bar-Cohen Y, Simpson J, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - A review. Smart Mater Struct 7:R15–R30

    Article  Google Scholar 

  • Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10(4):819–833

    Article  Google Scholar 

  • Takagi K, Luo Z, Asaka K, Tahara K (2005) Limited-angle motor using ionic polymer-metal composite. In: Proceedings of SPIE 5759, smart structures and materials 2005: electroactive polymer actuators and devices (EAPAD). San Diego, California, p 487

    Google Scholar 

  • Takagi K, Nakabo Y, Luo Z, Mukai T, Yamamura M, Hayakawa Y (2006a) An analysis of the increase of bending response in IPMC dynamics given uniform input. In: Proceedings of SPIE 6168, smart structures and materials 2006: electroactive polymer actuators and devices (EAPAD). San Diego, California, p 616814

    Google Scholar 

  • Takagi K, Yamamura M, Luo Z, Onishi M, Hirano S, Asaka K, Hayakawa Y (2006b) Development of a rajiform swimming robot using ionic polymer artificial muscles. In: 2006 IEEE/RSJ international conference on intelligent robots and systems. Beijing, pp 1861–1866

    Google Scholar 

  • Takagi K, Tomita N, Asaka K (2014) A simple method for obtaining large deformation of IPMC actuators utilizing copper tape. Adv Robot 28(7):513–521

    Article  Google Scholar 

  • Tiwari R, Kim KJ, Kim SM (2008) Ionic polymer-metal composite as energy harvesters. Smart Struct Syst 4(5):549–563

    Article  Google Scholar 

  • Tomita N, Takagi K, Asaka K (2011) Development of a quadruped soft robot with fully IPMC body. In: 2011 Proceedings of SICE annual conference. Tokyo, pp 1687–1690

    Google Scholar 

  • Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo Z (2004) Development of an artificial muscle linear actuator using ionic polymer-metal composites. Adv Robot 18(4):383–399

    Article  Google Scholar 

  • Yamakita M, Kamamichi N, Luo Z, Asaka K (2007) Robotic application of IPMC actuators with redoping capability. In: Kim K, Tadokoro S (eds) Electroactive polymers for robotics applications. Springer, London, pp 199–226

    Chapter  Google Scholar 

  • Yamakita M, Sera A, Kamamichi N, Asaka K (2008) Integrated design of an ionic polymer–metal composite actuator/sensor. Adv Robot 22:913–928

    Article  Google Scholar 

  • Yeom S, Oh I (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater Struct 18:085002

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was supported by the National Science Foundation under grant numbers CMMI-0745753 and CMMI-0926791 and by the Office of Naval Research under grant number N00014-10-1-0988. The authors would also like to thank Dr. Catherine N. Phan, Mr. Linfeng Shen, Dr. Matteo Verotti, and Dr. Horace Walcott who have contributed to the research efforts summarized in this chapter and Dr. Sean D. Peterson who has been a critically important collaborator in our research on energy harvesting through IPMCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinji Asaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Asaka, K., Takagi, K., Kamamichi, N., Cha, Y., Porfiri, M. (2016). IPMCs as EAPs: Applications. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31767-0_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31767-0_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-31767-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics