Skip to main content

Energy Harvesting from Fluids Using Ionic Polymer Metal Composites

  • Chapter
  • First Online:
Advances in Energy Harvesting Methods

Abstract

In this chapter, we discuss energy harvesting from steady, oscillatory, and unsteady water flows using ionic polymer metal composites (IPMCs). After a brief description of this new class of active materials and their ability to transduce strain energy into electrical form, we present three case studies spanning this range of flow environments. First, we examine energy harvesting from a heavy flapping flag hosting IPMCs in a steady flow water channel; second, we consider base excitation of a cantilevered IPMC to simulate the effect of an oscillatory flow; and finally, we investigate the impact of a vortex ring with an IPMC. Analytical insight on the mechanics of the coupled fluid–structure problem is used to interpret experimental results and provide design guidelines for energy harvesters based on active compliant materials in fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelnour K, Mancia E, Peterson SD, Porfiri M (2009) Hydrodynamics of underwater propulsors based on ionic polymer metal composites: a numerical study. Smart Mater Struct 18(8):085,006

    Google Scholar 

  2. Akaydin HD, Elvin N, Andreopoulos Y (2010) Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J Intell Mater Syst Struct 21(13):1263–1278

    Article  Google Scholar 

  3. Akle BJ, Bennet MD, Leo DJ, Wiles KB, McGrath JE (2007) Direct assembly process: a novel fabrication technique for large strain ionic polymer transducers. J Mater Sci 42(16):7031–7041

    Article  Google Scholar 

  4. Akle BJ, Leo DJ (2008) Single-walled carbon nanotubes – ionic polymer electroactive hybrid transducers. J Intell Mater Syst Struct 19(8):905–915

    Article  Google Scholar 

  5. Alben S (2008) The flapping-flag instability as a nonlinear eigenvalue problem. Phys Fluid 20:104,106

    Google Scholar 

  6. Allen JJ, Smits AJ (2001) Energy harvesting eel. J Fluid Struct 15(3–4):629–640

    Article  Google Scholar 

  7. Anton S, Sodano H (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16(3):R1–R21

    Article  Google Scholar 

  8. Aureli M, Basaran ME, Porfiri M (2012) Nonlinear finite amplitude vibrations of sharp-edged beams in viscous fluids. J Sound Vib 331(7):1624–1654

    Article  Google Scholar 

  9. Aureli M, Kopman V, Porfiri M (2010) Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE ASME Trans Mechatron 15(4):603–614

    Article  Google Scholar 

  10. Aureli M, Lin W, Porfiri M (2009) On the capacitance-boost of ionic polymer metal composites due to electroless plating: theory and experiments. J Appl Phys 105:104,911

    Google Scholar 

  11. Aureli M, Porfiri M (2012) Nonlinear sensing of ionic polymer metal composites. Continuum Mech Therm. (DOI 10.1007/s00161-012-0253-x)

    MATH  Google Scholar 

  12. Aureli M, Porfiri M (2010) Low frequency and large amplitude oscillations of cantilevers in viscous fluids. Appl Phys Lett 96(16):164,102

    Google Scholar 

  13. Aureli M, Prince C, Porfiri M, Peterson SD (2010) Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater Struct 19(1):015,003

    Google Scholar 

  14. Bard A, Faulkner L (1980) Electrochemical methods. Wiley, New York

    Google Scholar 

  15. Bonomo C, Brunetto P, Fortuna L, Giannone P, Graziani S, Strazzeri S (2008) A tactile sensor for biomedical applications based on IPMCs. IEEE Sensor J 8(7–8):1486–1493

    Article  Google Scholar 

  16. Bonomo C, Fortuna L, Giannone P, Graziani S (2006) A circuit to model the electrical behavior of an ionic polymer-metal composite. IEEE Trans Circ Syst 53(2):338–350

    Article  Google Scholar 

  17. Bonomo C, Fortuna L, Giannone P, Graziani S, Strazzeri S (2007) A nonlinear model for ionic polymer metal composites as actuators. Smart Mater Struct 16(1):1–12

    Article  Google Scholar 

  18. Bonomo C, Fortuna L, Giannone P, Graziani S, Strazzieri S (2006) A model for ionic polymer metal composites as sensors. Smart Mater Struct 15(3):749–758

    Article  Google Scholar 

  19. Bonomo C, Fortuna L, Giannone P, Graziani S, Strazzieri S (2008) A resonant force sensor based on ionic polymer metal composites. Smart Mater Struct 17(1):015,014

    Google Scholar 

  20. Brufau-Penella J, Puig-Vidal M, Giannone P, Graziani S, Strazzeri S (2008) Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater Struct 17(1):015,009

    Google Scholar 

  21. Bryant M, Garcia E (2011) Modeling and testing of a novel aeroelastic flutter energy harvester. J Vib Acoust 133(1):011,010

    Google Scholar 

  22. Chen Z, Hedgepeth D, Tan X (2009) A nonlinear, control-oriented model for ionic polymer-metal composite actuators. Smart Mater Struct 18(5):055,008

    Google Scholar 

  23. Chen Z, Tan X, Will A, Ziel C (2007) A dynamic model for ionic polymer-metal composite sensors. Smart Mater Struct 16(4):1477–1488

    Article  Google Scholar 

  24. Connell B, Yue D (2007) Flapping dynamics of a flag in a uniform stream. J Fluid Mech 581:33–67

    Article  MathSciNet  MATH  Google Scholar 

  25. Crighton D, Oswell J (1991) Fluid loading with mean flow. I. Response of an elastic plate to localized excitation. Phil Trans Phys Sci Eng 335(1639):557–592

    Article  MathSciNet  MATH  Google Scholar 

  26. Del Bufalo G, Placidi L, Porfiri M (2008) A mixture theory framework for modeling mechanical actuation of ionic polymer metal composites. Smart Mater Struct 17(4):045,010

    Google Scholar 

  27. Deole U, Lumia R, Shahinpoor M, Bermudez M (2008) Design and test of IPMC artificial muscle microgripper. J Micro Nano Mechatron 4(3):1865–3936

    Google Scholar 

  28. Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Trans ASME J Vib Acoust 130(4):041,002

    Google Scholar 

  29. Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18(2):025,009

    Google Scholar 

  30. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, Chichester, West Sussex

    Book  Google Scholar 

  31. Erturk A, Vieira WGR, De Marqui Jr, C, Inman DJ (2010) On the energy harvesting potential of piezoaeroelastic systems. Appl Phys Lett 96(18):184,103

    Google Scholar 

  32. Falcucci G, Aureli M, Ubertini S, Porfiri M (2011) Transverse harmonic oscillations of laminae in viscous fluids: a lattice boltzmann study. Phil Trans Roy Soc A Math Phys Eng Sci 369(1945):2456–2466

    Article  MathSciNet  Google Scholar 

  33. Fang BK, Ju MS, Lin CCK (2007) A new approach to develop ionic polymer-metal composites (IPMC) actuator: Fabrication and control for active catheter systems. Sensor Actuator A Phys 137(2):321–329

    Article  Google Scholar 

  34. Farinholt K, Leo DJ (2004) Modelling of electromechanical charge sensing in ionic polymer transducers. Mech Mater 36(5):421–433

    Article  Google Scholar 

  35. Farinholt K, Pedrazas N, Schluneker D, Burt D, Farrar C (2009) An energy harvesting comparison of piezoelectric and ionically conductive polymers. J Intell Mater Syst Struct 20(5):633–642

    Article  Google Scholar 

  36. Giacomello A, Porfiri M (2011) Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J Appl Phys 109(8):084,903

    Google Scholar 

  37. Gutta S, Lee JS, Trabia MB, Yim W (2009) Modeling of ionic polymer metal composite actuator dynamics using a large deflection beam model. Smart Mater Struct 18(11):115,023

    Google Scholar 

  38. Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectrics Freq Contr 52(4):584–595

    Article  Google Scholar 

  39. Guyomar D, Sebald G, Lefeuvre E, Khodayari A (2009) Toward heat energy harvesting using pyroelectric material. J Intell Mater Syst Struct 20(3):265–271

    Article  Google Scholar 

  40. Inman D, Grisso B (2006) Towards autonomous sensing. In: Tomizuka M, Yun CB, Giurgiutiu V (eds) Proc. SPIE smart structures and materials 2006: sensors and smart structures technologies for civil, mechanical, and aerospace systems, vol. 6174. San Diego, CA, USA, pp. 61,740T:1–7

    Google Scholar 

  41. Jo C, Naguib HE, Kwon RH (2008) Modeling and optimization of the electromechanical behavior of an ionic polymer-metal composite. Smart Mater Struct 17(6):065,022

    Google Scholar 

  42. Kamamichi N, Yamakita M, Asaka K, Luo ZW (2006) A snake-like swimming robot using IPMC actuator/sensor. In: Proc. 2006 IEEE international conference on robotics and automation, pp. 1812–1817

    Google Scholar 

  43. Kauffman J, Lesieutre G (2009) A low-order model for the design of piezoelectric energy harvesting devices. J Intell Mater Syst Struct 20(5):495–504

    Article  Google Scholar 

  44. Kim K, Shahinpoor M (2003) Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater Struct 12(1):65–79

    Article  Google Scholar 

  45. Kruusmaa M, Hunt A, Punning A, Anton M, Aabloo A (2008) A linked manipulator with ion-polymer metal composite (IPMC) joints for soft- and micromanipulation. In: Proc. 2008 IEEE international conference on robotics and automation, pp. 3588–3593

    Google Scholar 

  46. Lefeuvre E, Badel A, Richard C, Guyomar D (2007) Energy harvesting using piezoelectric materials: case of random vibrations. J Electroceramics 19(4):349–355

    Article  Google Scholar 

  47. Leonov V, Torfs T, Fiorini P, Van Hoof C (2007) Thermoelectric converters of human warmth for self-powered wireless sensor nodes. IEEE Sensor J 7(5):650–657

    Article  Google Scholar 

  48. Mansfield EH (1989) The bending and stretching of plates, 2nd edn. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  49. Mateu L, Moll F (2005) Review of energy harvesting techniques and applications for microelectronics. In: Lopez JF, Fernandez FV, Lopez-Villegas JM, de la Rosa JM (eds) Proc. SPIE VLSI circuits and systems II, vol. 5837. Sevilla, Spain, pp. 359–373

    Google Scholar 

  50. Mbemmo E, Chen Z, Shatara S, Tan X (2008) Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator. In: Proc. 2008 IEEE international conference on robotics and automation, pp. 689–694

    Google Scholar 

  51. Mitcheson P, Yeatman E, Rao G, Holmes A, Green T (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486

    Article  Google Scholar 

  52. Murray R, Rastegar J (2009) Novel two-stage piezoelectric-based ocean wave energy harvesters for moored or unmoored buoys. In: Ahmadian M, Ghasemi-Nejhad MN (eds) Proc. SPIE active and passive smart structures and integrated systems 2009, vol. 7288. San Diego, CA, USA, p. 72880E

    Google Scholar 

  53. Myers R, Vickers M, Kim H, Priya S (2007) Small scale windmill. Appl Phys Lett 90(5):054,106

    Google Scholar 

  54. Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys 92(5):2899–2915

    Article  Google Scholar 

  55. Nemat-Nasser S, Li J (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87(7):3321–3331

    Article  Google Scholar 

  56. Nemat-Nasser S, Thomas C (2004) Ionomeric polymer-metal composites electroactive polymer (EAP) Actuators as artificial muscles - reality, potential and challenges, Chap. 6. SPIE Press, Bellingham, WA

    Google Scholar 

  57. Newbury K, Leo DJ (2003) Linear electromechanical model of ionic polymer transducers-part I: model development. J Intell Mater Syst Struct 14(6):333–342

    Article  Google Scholar 

  58. Peterson SD, Porfiri M (2012) Energy exchange between a vortex ring and an ionic polymer metal composite. Appl Phys Lett 100(11):114,102

    Google Scholar 

  59. Peterson SD, Porfiri M (2012) Interaction of a vortex pair with a flexible plate in an ideal quiescent fluid. J Intell Mater Syst Struct 23(13):1482–1501

    Article  Google Scholar 

  60. Peterson SD, Porfiri M, Rovardi A (2009) A particle image velocimetry study of vibrating ionic polymer metal composites in aqueous environments. IEEE ASME Trans Mechatron 14(4):474–483

    Article  Google Scholar 

  61. Porfiri M (2008) Charge dynamics in ionic polymer metal composites. J Appl Phys 104(10):104,915

    Google Scholar 

  62. Porfiri M (2009) An electromechanical model for sensing and actuation of ionic polymer metal composites. Smart Mater Struct 18(1):015,016

    Google Scholar 

  63. Porfiri M (2009) Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys Rev E 79(4):041,503

    Google Scholar 

  64. Qin Z, Batra RC (2009) Local slamming impact of sandwich composite hulls. Int J Solid Struct 46(10):2011–2035

    Article  MATH  Google Scholar 

  65. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide. Springer, Berlin

    Google Scholar 

  66. Rastegar J, Pereira C, Nguyen H (2006) Piezoelectric-based power sources for harvesting energy from platforms with low-frequency vibration. In: White EV (ed) Proc. SPIE Smart Structures and Materials 2006: Industrial and Commercial Applications of Smart Structures Technologies, vol. 6171. San Diego, CA, USA, pp. 617,101:1–7

    Google Scholar 

  67. Renno J, Daqaq M, Inman D (2009) On the optimal energy harvesting from a vibration source. J Sound Vib 320(1–2):386–405

    Article  Google Scholar 

  68. Roundy S (2005) On the effectiveness of vibration-based energy harvesting. J Intell Mater Syst Struct 16(10):809–823

    Article  Google Scholar 

  69. Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84(1):64–76

    Article  Google Scholar 

  70. Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater Struct 7(6):R15–R30

    Article  Google Scholar 

  71. Shahinpoor M, Kim K (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10(4):819–833

    Article  Google Scholar 

  72. Shahinpoor M, Kim K (2004) Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater Struct 13(6):1362–1388

    Article  Google Scholar 

  73. Shahinpoor M, Kim K (2005) Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater Struct 14(1):197–214

    Article  Google Scholar 

  74. Shelley M, Vandenberghe N, Zhang J (2005) Heavy flags undergo spontaneous oscillations in flowing water. Phys Rev Lett 94(9):94,302

    Google Scholar 

  75. Sodano H, Inman D, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Digest 36:197–205

    Article  Google Scholar 

  76. Sodano HA, Inman DJ, Park G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16(10):799–807

    Article  Google Scholar 

  77. Sodano HA, Inman DJ, Park G (2005) Generation and storage of electricity from harvesting devices. J Intell Mater Syst Struct 16(1):67–75

    Article  Google Scholar 

  78. St. Clair D, Bibo A, Sennakesavababu VR, Daqaq MF, Li G (2010) A scalable concept for micro-power generation using flow-induced self-excited oscillations. Appl Phys Lett 96(14):144,103

    Google Scholar 

  79. Sullivan IS, Niemela JJ, Hershberger RE, Bolster D, Donnelly RJ (2008) Dynamics of thin vortex rings. J Fluid Mech 609:319–347

    Article  MathSciNet  MATH  Google Scholar 

  80. Tang L, Paı̄doussis M (2008) The influence of the wake on the stability of cantilevered flexible plates in axial flow. J Sound Vib 310(3):512–526

    Google Scholar 

  81. Taylor GW, Burns JR, Kammann SM, Powers WB, Welsh TR (2001) The energy harvesting eel: A small subsurface ocean/river power generator. IEEE J Ocean Eng 26(4):539–547

    Article  Google Scholar 

  82. Tiwari R, Kim K, Kim S (2008) Ionic polymer-metal composite as energy harvesters. Smart Struct Syst 4(5):549–563

    Google Scholar 

  83. Tuck EO (1969) Calculation of unsteady flows due to unsteady motion of cylinders in a viscous fluid. J Eng Math 3(1):29–44

    Article  MathSciNet  MATH  Google Scholar 

  84. Wallmersperger T, Akle B, Leo D, Kroplin B (2008) Electrochemical response in ionic polymer transducers: an experimental and theoretical study. Compos Sci Tech 68(5):1173–1180

    Article  Google Scholar 

  85. Wallmersperger T, Kroplin B, Gulch R (2004) Coupled chemo-electro-mechanical formulation for ionic polymer gels-numerical and experimental investigations. Mech Mater 36(5–6): 411–420

    Article  Google Scholar 

  86. Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101(2):024,912

    Google Scholar 

  87. Yeatman E (2009) Energy harvesting: small scale energy production from ambient sources. In: Ahmadian M, Ghasemi-Nejhad MN (eds) Proc. SPIE Active and Passive Smart Structures and Integrated Systems 2009, vol. 7288. San Diego, CA, USA, p. 728802

    Google Scholar 

  88. Yeom SW, Oh IK (2009) A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater Struct 18(8):085,002

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science and Engineering Research Council, the National Science Foundation, and the Office of Naval Research under grant numbers 386282-2010, CMMI-0745753 and CMMI-0926791, and N00014-10-1-0988, respectively. The authors would also like to thank the students Matteo Aureli, Emre Basaran, Alberto Giacomello, and Chekema Prince who have contributed to the research efforts summarized in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Porfiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porfiri, M., Peterson, S.D. (2013). Energy Harvesting from Fluids Using Ionic Polymer Metal Composites. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics