Skip to main content

Electrochemistry of Metal Nanoparticles and Quantum Dots

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Nanoparticles

Abstract

Metal nanoparticles, with a wide range of applications in catalysis and sensing, have structural and electronic properties that differ from those of their bulk macroscopic counterparts. Electrochemical techniques are of particular interest in the study of metal nanoparticles because electrons may undergo quantum confinement effects which are reflected in their electrochemical behavior, resulting, ultimately, in three distinguishable voltammetric regimes: bulk continuum, quantized double-layer charging, and molecule-like. Similarly, semiconductor nanoparticles (quantum dots, QDs) are receiving considerable attention due to their high fluorescence, which makes them of interest for biological and medical applications, among others. The semiconductor bulk materials possess defect states that originate from impurities, divacancies, or surface reactions as a result of their synthesis. Voltammetric features provide information on bandgap energy, the position of conduction and valence band edges, and the position of defect sites as well as on the interaction with the capping ligand. This chapter is devoted to provide a critical view of the current state of the art in the electrochemistry of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. C.N.R. Rao, G.U. Kulkarni, A. Govindaraj, B.C. Satishkumar, P.J. Thomas, Pure Appl. Chem. 72, 21–33 (2000)

    Google Scholar 

  2. A. Eftekhari (ed.), Nanostructured Materials in Electrochemistry (Wiley, Weinheim, 2008)

    Google Scholar 

  3. A. Henglein, Top. Curr. Chem. 143, 113–180 (1988)

    Google Scholar 

  4. A. Henglein, Chem. Rev. 89, 1861–1873 (1989)

    Google Scholar 

  5. A. Henglein, J. Phys. Chem. 83, 2209–2216 (1979)

    Google Scholar 

  6. J. Kiwi, M. Grätzel, J. Am. Chem. Soc. 101, 7214–7217 (1979)

    Google Scholar 

  7. R.W. Murray, Chem. Rev. 108, 2688–2720 (2008)

    Google Scholar 

  8. M. Amelia, C. Lincheneau, S. Silvi, A. Credi, Chem. Soc. Rev. 41, 5728–5743 (2012)

    Google Scholar 

  9. A.J. Bard, Z. Ding, N. Myung, Struct. Bond. 118, 1–57 (2005)

    Google Scholar 

  10. W. Kucur, W. Bücking, T. Nann, Microchim. Acta 160, 299–308 (2008)

    Google Scholar 

  11. D.S. Miller, A.J. Bard, G. McLendon, J.J. Ferguson, J. Am. Chem. Soc. 103, 5336–5341 (1981)

    Google Scholar 

  12. G. Schmid, U. Giebel, W. Hunter, A. Schwenk, Inorg. Chim. Acta 85, 97–102 (1984)

    Google Scholar 

  13. M.G. Bawendi, M.L. Steigerwald, L.E. Brus, Ann. Rev. Phys. Chem. 41, 477–496 (1990)

    Google Scholar 

  14. M.J. Weaver, X. Gao, J. Phys. Chem. 97, 332–338 (1993)

    Google Scholar 

  15. G. Chumanov, K. Sokolov, B.W. Gregory, T.M. Cotton, J. Phys. Chem. 99, 9466–9471 (1995)

    Google Scholar 

  16. K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Anal. Chem. 67, 735–743 (1995)

    Google Scholar 

  17. T. Ung, M. Giersign, D. Dunstan, P. Mulvaney, Langmuir 13, 1773–1782 (1997)

    Google Scholar 

  18. R.S. Ingram, M.J. Hostetler, W.R.W. Murray, T.G. Schaaf, J. Khoury, R.L. Whetten, T.P. Bigioni, D.K. Githrie, P.N. First, J. Am. Chem. Soc. 119, 9279–9280 (1997)

    Google Scholar 

  19. S. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, R.L. Whetten, Science 280, 2098–2101 (1998)

    Google Scholar 

  20. M.O. Finot, G.D. Braybrook, M.T. McDermott, J. Electroanal. Chem. 466, 234–241 (1999)

    Google Scholar 

  21. A. Doménech-Carbó, J. Labuda, F. Scholz, Pure Appl. Chem. 85, 609–631 (2013)

    Google Scholar 

  22. R. Tel-Vered, A.J. Bard, J. Phys. Chem. B 110, 25279–25287 (2006)

    Google Scholar 

  23. Y. Gründer, H.L.T. Ho, J.F.W. Mosselmans, S.L.M. Schroeder, R.A.W. Dryfe, Phys. Chem. Chem. Phys. 13, 15681–15689 (2011)

    Google Scholar 

  24. A.J. Bard, M.V. Mirkin (eds.), Scanning Electrochemical Microscopy, 2nd edn. (CRC Press, Boca Raton, 2012)

    Google Scholar 

  25. D.G. Georgnopoulou, M.V. Mirkin, R.W. Murray, Nano Lett. 4, 1763–1767 (2004)

    Google Scholar 

  26. R.G. Fedorov, D. Mandler, Phys. Chem. Chem. Phys. 15, 2725–2732 (2013)

    Google Scholar 

  27. X. Shan, U. Patel, S. Wang, R. Iglesias, N. Tao, Science 327, 1363–1366 (2010)

    Google Scholar 

  28. K. Huang, A. Agnès, M.A. Bahri, C. Demaille, ACS Nano 7, 4151–4163 (2013)

    Google Scholar 

  29. D.J. Norris, A.L. Efros, M. Rosen, M.G. Bawendi, Phys. Rev. B 53, 16347–16354 (1996)

    Google Scholar 

  30. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025–1102 (2005)

    Google Scholar 

  31. A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190–200 (2010)

    Google Scholar 

  32. B.M. Quinn, P. Lijeroth, V. Ruiz, T. Laaksonen, K. Kontturi, J. Am. Chem. Soc. 125, 6644–6645 (2003)

    Google Scholar 

  33. G.C. Lica, B.S. Zelakiewicz, Y.Y. Tong, J. Electroanal. Chem. 554, 127–132 (2003)

    Google Scholar 

  34. R.L. Wolfe, R.W. Murray, Anal. Chem. 78, 1167–1173 (2006)

    Google Scholar 

  35. M.R. Branham, A.D. Douglas, A.J. Mills, J.B. Tracy, P.S. White, R.W. Murray, Langmuir 22, 11376–11383 (2006)

    Google Scholar 

  36. L.D. Menard, S.-P. Gao, H. Xu, R.D. Twesten, A.S. Harper, Y. Song, G. Wang, A.D. Douglas, Y.C. Yang, A.I. Frenkel, R.G. Nuzzo, R.W. Murray, J. Phys. Chem. B 110, 12874–12883 (2006)

    Google Scholar 

  37. S. Yang, D. Prendergast, J.B. Neaton, Nano Lett. 12, 383–388 (2012)

    Google Scholar 

  38. A.C. Templeton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res. 33, 27–36 (2000)

    Google Scholar 

  39. S. Devarajan, S. Sampath, Chem. Nanomater. 2, 646–687 (2004)

    Google Scholar 

  40. D.T. Miles, R.W. Murray, Anal. Chem. 75, 1251–1257 (2003)

    Google Scholar 

  41. J.F. Hicks, A.C. Templeton, S. Chen, K.M. Sheran, R. Jasti, R.W. Murray, J. Debor, T.G. Schaaff, R.L. Whetten, Anal. Chem. 71, 3703–3711 (1999)

    Google Scholar 

  42. G. Makov, A. Nitzan, L.E. Brus, J. Chem. Phys. 88, 5076–5085 (1988)

    Google Scholar 

  43. J.P. Perdew, Phys. Rev. B 36, 6175–6180 (1988)

    Google Scholar 

  44. J.J. Pietron, J.F. Hicks, R.W. Murray, J. Am. Chem. Soc. 121, 5565–5570 (1999)

    Google Scholar 

  45. S.J. Green, J.J. Stokes, M.J. Hoestetler, J. Pietron, R.W. Murray, J. Phys. Chem. B 101, 2663–2668 (1997)

    Google Scholar 

  46. S.J. Chen, J. Electroanal. Chem. 574, 153–165 (2004)

    Google Scholar 

  47. D. Lee, R.L. Donkers, G.L. Wang, A.S. Harper, R.W. Murray, J. Am. Chem. Soc. 126, 6193–6199 (2004)

    Google Scholar 

  48. T. Iwasa, K. Nobusada, Chem. Phys. Lett. 441, 268–272 (2007)

    Google Scholar 

  49. Y. Yang, S. Chen, Nano Lett. 3, 75–79 (2003)

    Google Scholar 

  50. G. Schmid, Chem. Rev. 92, 1409–1418 (1992)

    Google Scholar 

  51. A. Doménech-Carbó, E. Coronado, P. Díaz, A. Ribera, Electroanalysis 22, 293–302 (2010)

    Google Scholar 

  52. M. Grden, J. Kotowski, A. Czerwinski, J. Solid State Electrochem. 4, 273–278 (2000)

    Google Scholar 

  53. S.N. Inamdar, P.P. Ingole, S.K. Haram, Chem. Phys. Chem 9, 2574–2579 (2008)

    Google Scholar 

  54. E. Kukur, J. Riegler, G.A. Urban, T. Nann, J. Chem. Phys. 119, 2333–2337 (2003)

    Google Scholar 

  55. S. Impellizzeri, S. Monaco, I. Yildiz, M. Amelia, A. Credi, F.M. Raymo, J. Phys. Chem. C 114, 7007–7013 (2010)

    Google Scholar 

  56. A.K. Gooding, D.E. Gomez, P. Mulvaney, ACS Nano 2, 669–676 (2008)

    Google Scholar 

  57. D. Dorokhin, N. Tomeczak, D.N. Reihoudt, A.H. Velders, G.J. Vancso, Nanotechnology 21, 285703 (2010)

    Google Scholar 

  58. J. Aguilera-Sigalat, V.F. Pais, A. Doménech-Carbó, U. Pischel, R.E. Galian, J. Pérez-Prieto, J. Phys. Chem. C 117, 7365–7375 (2013)

    Google Scholar 

  59. S.K. Poznyak, N.P. Osipovich, A. Shavel, D.V. Talapin, M. Gao, A. Eychmüller, N. Gaponik, J. Phys. Chem. B 109, 1094–1100 (2005)

    Google Scholar 

  60. W.J. Plieth, J. Phys. Chem. 86, 3166–3172 (1982)

    Google Scholar 

  61. P.L. Redmon, A.J. Hallock, L.E. Brus, Nano Lett. 5, 131–135 (2005)

    Google Scholar 

  62. Kh.Z. Brainina, L.G. Galperin, A.L. Galperin, J. Solid State Electrochem. 14, 981–988 (2010)

    Google Scholar 

  63. Kh.Z. Brainina, L.G. Galperin, E.V. Vikulova, N.Yu. Stozhko, A.M. Murzakaev, O.R. Timoshenkova, Yu.A. Kotov, J. Solid State Electrochem. 15, 1049–1056 (2011)

    Google Scholar 

  64. Kh.Z. Brainina, L.G. Galperin, L.A. Piankova, N.Yu. Stozhko, A.M. Murzakaev, O.R. Timoshenkova, J. Solid State Electrochem. 15, 2469–2475 (2011)

    Google Scholar 

  65. Kh.Z. Brainina, L.G. Galperin, T.Yu. Kiryuhina, A.L. Galperin, N.Yu. Stozhko, A.M. Murzakaev, O.R. Timoshenkova, J. Solid State Electrochem. 16, 2365–2372 (2012)

    Google Scholar 

  66. L. Tang, X. Li, R.C. Cammarata, C. Friesen, K. Sieradzki, J. Am. Chem. Soc. 132, 11722–11726 (2010)

    Google Scholar 

  67. M. Thompson, R.G. Compton, Chem. Phys. Chem. 7, 1964–1970 (2006)

    Google Scholar 

  68. T.J. Davies, R.G. Compton, J. Electroanal. Chem. 585, 63–82 (2005)

    Google Scholar 

  69. T.J. Davies, C.E. Banks, R.G. Compton, J. Solid State Electrochem. 9, 797–808 (2005)

    Google Scholar 

  70. Y.G. Zhou, N.V. Rees, R.G. Compton, Angew. Chem. Int. Ed. 50, 4219–4221 (2011)

    Google Scholar 

  71. H.S. Toh, C. Batchelor-McAuley, K. Tschulik, M. Uhlemann, A. Crossleyc, R.G. Compton, Nanoscale 5, 4884–4893 (2013)

    Google Scholar 

  72. Y.G. Zhou, N.V. Rees, R.G. Compton, Chem. Phys. Lett. 511, 183–186 (2011)

    Google Scholar 

  73. Y.G. Zhou, N.V. Rees, R.G. Compton, Chem. Phys. Chem. 12, 2085–2087 (2011)

    Google Scholar 

  74. X. Xiao, A. Bard, J. Am. Chem. Soc. 129, 9610–9612 (2007)

    Google Scholar 

  75. X. Xiao, F.R.F. Fan, J. Zhou, A.J. Bard, J. Am. Chem. Soc. 130, 16669–16677 (2008)

    Google Scholar 

  76. S.J. Kwon, F.R.F. Fan, A.J. Bard, J. Am. Chem. Soc. 132, 13165–13167 (2010)

    Google Scholar 

  77. S.J. Kwon, H. Zhou, F.-R.F. Fan, V. Vorobyev, B. Zhang, A.J. Bard, Phys. Chem. Chem. Phys. 13, 5395–5402 (2011)

    Google Scholar 

  78. W. Li, B. Su, Electrochem. Commun. 33, 27–30 (2013)

    Google Scholar 

  79. Y. Gründer, P. Thompson, A. Brownrigg, M. Darlington, C.A. Lucas, J. Phys. Chem. C 116, 6283–6288 (2012)

    Google Scholar 

  80. J. Lu, M. Yan, L. Ge, S. Ge, S. Wang, J. Yan, Biosens. Bioelectron. 47, 271–277 (2013)

    Google Scholar 

  81. G.F. Jie, P. Liua, S.S. Zhang, Chem. Commun. 46, 1323–1325 (2010)

    Google Scholar 

  82. I. Díez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A.S. Goldmann, A.H.E. Müller, O. Ikkala, R.H.A. Ras, Angew. Chem. Int. Ed. 48, 2122–2125 (2009)

    Google Scholar 

  83. L. Li, H. Liu, Y. Shen, J. Zhang, J.J. Zhu, Anal. Chem. 83, 661–665 (2011)

    Google Scholar 

  84. T.J. Jacobsson, T. Edvinsson, J. Phys. Chem. C 117, 5497–5504 (2013)

    Google Scholar 

  85. B. Liu, T. Ren, J.R. Zhang, H.Y. Chen, J.J. Zhu, C. Burda, Electrochem. Commun. 9, 551–557 (2007)

    Google Scholar 

  86. Z. Guo, T. Hao, S. Du, B. Chen, Z. Wang, X. Li, S. Wang, Biosens. Bioelectron. 44, 101–107 (2013)

    Google Scholar 

  87. W. Li, W. Dai, L. Ge, S. Ge, M. Yan, J.J. Yu, Inorg. Organomet. Polym. 23, 719–725 (2013)

    Google Scholar 

  88. F. Liu, Y. Zhang, C. Chu, J. Lu, J. Yu, X. Song, Monatshefte für Chemie – Chemical Monthly (Springer, Vienna, 2013)

    Google Scholar 

  89. Y. Zhai, C. Zhu, J. Ren, E. Wang, S. Dong, Chem. Commun. 49, 2400–2402 (2013)

    Google Scholar 

  90. I. Li, Y. Chen, Q. Lu, J. Ji, Y. Shen, M. Xu, R. Fei, G. Yang, K. Zhang, J.R. Zhang, J.J. Zhu, Sci. Rep. 3, 1529 (2013). doi:10.1038/srep01529

    Google Scholar 

  91. Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Chem. Soc. Rev. 40, 4167–4185 (2011)

    Google Scholar 

  92. J. Xu, W. Huang, R.L. McCreery, J. Electroanal. Chem. 410, 235–242 (1996)

    Google Scholar 

  93. J. Hernández, J. Solla-Gullón, E. Herrero, J. Electroanal. Chem. 574, 185–196 (2004)

    Google Scholar 

  94. A.J. Wain, Electrochim. Acta 92, 383–391 (2013)

    Google Scholar 

  95. C.M. Sánchez-Sánchez, F.J. Vidal-Iglesias, J. Solla-Gullón, V. Montiel, A. Aldaz, J.M. Feliu, E. Herrero, Electrochim. Acta 55, 8252–8257 (2010)

    Google Scholar 

  96. P. Mayer, R. Holze, J. Solid State Electrochem. 5, 402–411 (2001)

    Google Scholar 

  97. O.A. Petrii, J. Solid State Electrochem. 12, 609–642 (2008)

    Google Scholar 

  98. L. Sun, D. Vu, J.A. Cox, J. Solid State Electrochem. 12, 816–822 (2005)

    Google Scholar 

  99. A. Currao, Chimia 61, 815–819 (2007)

    Google Scholar 

  100. J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114, 13118–13125 (2010)

    Google Scholar 

  101. Y. Lai, J. Gong, C. Lin, Int. J. Hydrogen. Energy 37, 6438–6446 (2011)

    Google Scholar 

  102. K. Maeda, K. Domen, J. Phys. Chem. Lett. 1, 2655–2661 (2010)

    Google Scholar 

  103. M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie, C. Lin, Energy Environ. Sci. 6, 1211–1220 (2013)

    Google Scholar 

  104. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577–583 (2010)

    Google Scholar 

  105. P.V. Kamat, J. Phys. Chem. Lett. 3, 663–672 (2012)

    Google Scholar 

  106. L. Rassaei, M. Amiri, C.M. Cirtiu, M. Sillanpää, F. Marken, M. Sillanpää, Trends Anal. Chem. 30, 1704–1715 (2011)

    Google Scholar 

  107. S. Jiang, K.Y. Win, S. Liu, C.P. Teng, Y. Zheng, M.-Y. Han, Nanoscale 5, 3127–3148 (2013)

    Google Scholar 

  108. S.S. Kumar, K. Kwak, D. Lee, Anal. Chem. 83, 3244–3247 (2011)

    Google Scholar 

  109. J. Wang, E. Katz, I. Willner (eds.), Bioelectronics (Wiley, Weinheim, 2005)

    Google Scholar 

  110. F. Wang, S. Hu, Microchim. Acta 165, 1–22 (2009)

    Google Scholar 

  111. P. Chandra, J. Singh, A. Singh, A. Srivastava, R.N. Goyal, Y.B. Shim, J. Nanopart. Art ID: 535901, 12 p (2013)

    Google Scholar 

  112. R. Freeman, J. Girsh, I. Willner, Appl. Mater. Interfaces 5, 2815–2834 (2013)

    Google Scholar 

  113. A.R. Schmidt, N.D.T. Nguyen, M.C. Leopold, Langmuir 29, 4574–4583 (2013)

    Google Scholar 

  114. J. Li, J. Yang, Z. Yang, Y. Li, S. Yu, Q. Xua, X. Hu, Anal. Methods 4, 1725–1728 (2012)

    Google Scholar 

  115. B. Wang, J. Zhang, Y. Hu, S. Wang, R. Liu, C. He, X. Wang, H. Wang, Int. J. Electrochem. Sci. 8, 7175–7186 (2013)

    Google Scholar 

  116. F. Lisdat, D. Schäfer, A. Kapp, Anal. Bioanal. Chem. 405, 3739–3752 (2013)

    Google Scholar 

  117. Y. Liu, L. Zhu, J. Kong, P. Yang, B. Liu, Electrochem. Commun. 33, 59–62 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Doménech-Carbó, A., Galian, R.E., Aguilera-Sigalat, J., Pérez-Prieto, J. (2015). Electrochemistry of Metal Nanoparticles and Quantum Dots. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-13188-7_28-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13188-7_28-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-13188-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Electrochemistry of Metal Nanoparticles and Quantum Dots
    Published:
    04 May 2015

    DOI: https://doi.org/10.1007/978-3-319-13188-7_28-2

  2. Original

    Electrochemistry of Metal Nanoparticles and Quantum Dots
    Published:
    11 December 2014

    DOI: https://doi.org/10.1007/978-3-319-13188-7_28-1