Skip to main content

Holographic Optical Coherence Imaging

  • Reference work entry
Optical Coherence Tomography
  • 9701 Accesses

Abstract

This chapter gives an overview of the principles of holographic OCI. It begins with a description of off-axis holography as spatial heterodyne detection and continues with the origin and role of speckle in multichannel illumination of tissue. Image-domain holography (IDH) and Fourier-domain holography (FDH) are described. Holography in the Fourier domain has the capability for phase-contrast imaging that can acquire small sub-wavelength displacements despite long coherence length. The trade-offs between photorefractive and digital holography are discussed. The chief biological target is multicellular spheroids, specifically rat osteogenic sarcomas that are grown in vitro. After describing the physiological and optical properties of these spheroids, results from holographic OCI are presented using both photorefractive and digital holography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. D.D. Nolte, Holography of tissues, Chap. 12, in Optical Interferometry for Biology and Medicine (Springer, New York, 2012), pp. 307–333

    Chapter  Google Scholar 

  2. D.D. Nolte, Semi-insulating semiconductor heterostructures: optoelectronic properties and applications. J. Appl. Phys. 85, 6259–6289 (1999)

    Article  ADS  Google Scholar 

  3. C. Dunsby, D. Mayorga-Cruz, I. Munro, Y. Gu, P.M.W. French, D.D. Nolte, M.R. Melloch, High-speed wide-field coherence-gated imaging via photorefractive holography with photorefractive multiple quantum well devices. J. Opt. A Pure Appl. Opt. 5, S448–S456 (2003)

    Article  ADS  Google Scholar 

  4. K.A. Stetson, Holographic fog penetration. J. Opt. Soc. Am. 57, 1060–1061 (1967)

    Article  Google Scholar 

  5. K.G. Spears, J. Serafin, N.H. Abramson, X. Zhu, H. Bjelkhagen, Chrono-coherent imaging for medicine. IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989)

    Article  Google Scholar 

  6. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques. Opt. Lett. 16, 487 (1991)

    Article  ADS  Google Scholar 

  7. P. Massatsch, F. Charriere, E. Cuche, P. Marquet, C.D. Depeursinge, Time-domain optical coherence tomography with digital holographic microscopy. Appl. Opt. 44, 1806–1812 (2005)

    Article  ADS  Google Scholar 

  8. S.C.W. Hyde, R. Jones, N.P. Barry, J.C. Dainty, P.M.W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Depth-resolved holography through turbid media using photorefraction. IEEE J. Sel. Top. Quantum Electron. 2, 965–975 (1996)

    Article  Google Scholar 

  9. L. Vabre, A. Dubois, A.C. Boccara, Thermal-light full-field optical coherence tomography. Opt. Lett. 27, 530–532 (2002)

    Article  ADS  Google Scholar 

  10. M. Tziraki, R. Jones, P. French, D. Nolte, M. Melloch, Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes. Appl. Phys. Lett. 75, 363–365 (1999)

    Article  Google Scholar 

  11. C. Dunsby, P.M.W. French, Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D Appl. Phys. 36, R207–R227 (2003)

    Article  ADS  Google Scholar 

  12. A.V. Mamaev, L.L. Ivleva, N.M. Polozkov, V.V. Shkunov, Photorefractive visualisation through opaque scattering media, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1993), p. CFK6

    Google Scholar 

  13. S.C.W. Hyde, N.P. Barry, R. Jones, J.C. Dainty, P.M.W. French, Sub-100 micron depth-resolved holographic imaging through scattering media in the near-infrared. Opt. Lett. 20, 2330–2332 (1995)

    Article  ADS  Google Scholar 

  14. N.P. Barry, R. Jones, S.C.W. Hyde, J.C. Dainty, P.M.W. French, High background holographic imaging using photorefractive barium titanate. Electron. Lett. 33, 1732–1733 (1997)

    Article  Google Scholar 

  15. Q.N. Wang, R.M. Brubaker, D.D. Nolte, M.R. Melloch, Photorefractive quantum wells: transverse Franz-Keldysh geometry. J. Opt. Soc. Am. B 9, 1626–1641 (1992)

    Article  ADS  Google Scholar 

  16. R. Jones, S.C.W. Hyde, M.J. Lynn, N.P. Barry, J.C. Dainty, P.M.W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Holographc storage and high background imaging using photorefractive multiple quantum wells. Appl. Phys. Lett. 69, 1837 (1996)

    Article  ADS  Google Scholar 

  17. R. Jones, N.P. Barry, S.C.W. Hyde, P.M.W. French, K.M. Kwolek, D.D. Nolte, M.R. Melloch, Direct-to-video holographic readout in quantum wells for 3-D imaging through turbid media. Opt. Lett. 23, 103 (1998)

    Article  ADS  Google Scholar 

  18. Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C.W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P.M.W. French, D.D. Nolte, W. Headley, M.R. Melloch, High-frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources and photorefractive structured illumination. Sel. Top. Quantum Electron. 7, 878–886 (2001)

    Article  Google Scholar 

  19. P. Yu, M. Mustata, D. Chen, L.J. Pyrak-Nolte, D.D. Nolte, Holographic 3-D laser imaging into sandstone. Geophys. Res. Lett. 29, 49-1–49-4 (2002)

    Article  ADS  Google Scholar 

  20. M. Tziraki, R. Jones, P.M.W. French, M.R. Melloch, D.D. Nolte, Photorefractive holography for imaging through turbid media using low coherence light. Appl. Phys. B Lasers Opt. 70, 151–154 (2000)

    Article  ADS  Google Scholar 

  21. R. Jones, N.P. Barry, S.C.W. Hyde, M. Tziraki, J.C. Dainty, P.M.W. French, D.D. Nolte, K.M. Kwolek, M.R. Melloch, Real-time 3-D holographic imaging using photorefractive media including multiple-quantum-well devices. IEEE J. Sel. Top. Quantum Electron. 4, 360–369 (1998)

    Article  Google Scholar 

  22. P. Yu, M. Mustata, J.J. Turek, P.M.W. French, M.R. Melloch, D.D. Nolte, Holographic optical coherence imaging of tumor spheroids. Appl. Phys. Lett. 83, 575–577 (2003)

    Article  ADS  Google Scholar 

  23. Z. Ansari, Y. Gu, J. Siegel, D. Parsons-Karavassilis, C.W. Dunsby, M. Itoh, M. Tziraki, R. Jones, P.M.W. French, D.D. Nolte, W. Headley, M.R. Melloch, High frame-rate, 3-D photorefractive holography through turbid media with arbitrary sources, and photorefractive structured illumination. IEEE J. Sel. Top. Quantum Electron. 7, 878–886 (2001)

    Article  Google Scholar 

  24. P. Yu, M. Mustata, W. Headley, D.D. Nolte, J.J. Turek, P.M.W. French, Optical coherence imaging of rat tumor spheroids, in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications VI, ed. by SPIE, vol. 4619 (SPIE, Bellingham, 2002)

    Chapter  Google Scholar 

  25. P. Yu, M. Mustata, L.L. Peng, J.J. Turek, M.R. Melloch, P.M.W. French, D.D. Nolte, Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids. Appl. Optics 43, 4862–4873 (2004)

    Article  ADS  Google Scholar 

  26. P. Yu, L. Peng, M. Mustata, J.J. Turek, M.R. Melloch, D.D. Nolte, Time-dependent speckle in holographic optical coherence imaging and the state of health of tumor tissue. Opt. Lett. 29, 68–70 (2004)

    Article  ADS  Google Scholar 

  27. K. Jeong, L. Peng, D.D. Nolte, M.R. Melloch, Fourier-domain holography in photorefractive quantum-well films. Appl. Opt. 43, 3802–3811 (2004)

    Article  ADS  Google Scholar 

  28. K. Jeong, L. Peng, J.J. Turek, M.R. Melloch, D.D. Nolte, Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye. Appl. Opt. 44, 1798–1805 (2005)

    Article  ADS  Google Scholar 

  29. K. Jeong, J.J. Turek, D.D. Nolte, Phase-contrast optical coherence imaging of tissue, in Progress in Biomedical Optics and Imaging - Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX (2005)

    Google Scholar 

  30. J.W. Goodman, R.W. Lawrence, Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77 (1967)

    Article  ADS  Google Scholar 

  31. T.S. Huang, Digital holography. Proc. Inst. Electr. Electron. Eng. 59, 1335 (1971)

    Article  Google Scholar 

  32. T. Kreis, Digital holographic interference-phase measurement using the fourier-transform method. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 3, 847–855 (1986)

    Article  ADS  Google Scholar 

  33. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, 2-dimensional imaging through diffusing media using 150-Fs gated electronic holography techniques. Opt. Lett. 16, 487–489 (1991)

    Article  ADS  Google Scholar 

  34. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, J. Valdmanis, Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses. Appl. Optics 30, 4204–4210 (1991)

    Article  ADS  Google Scholar 

  35. H. Chen, M. Shih, E. Arons, E. Leith, J. Lopez, D. Dilworth, P.C. Sun, Electronic holographic imaging through living human tissue. Appl. Optics 33, 3630–3632 (1994)

    Article  ADS  Google Scholar 

  36. U. Schnars, Direct phase determination in hologram interferometry with use of digitally recorded holograms. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 11, 2011–2015 (1994)

    Article  ADS  Google Scholar 

  37. T.M. Kreis, W.P.O. Juptner, Suppression of the dc term in digital holography. Opt. Eng. 36, 2357–2360 (1997)

    Article  ADS  Google Scholar 

  38. I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  39. B. Nilsson, T.E. Carlsson, Direct three-dimensional shape measurement by digital light-in-flight holography. Appl. Opt. 37, 7954–7959 (1998)

    Article  ADS  Google Scholar 

  40. T. Zhang, I. Yamaguchi, Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett. 23, 1221–1223 (1998)

    Article  ADS  Google Scholar 

  41. F. Dubois, L. Joannes, J.C. Legros, Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. 38, 7085–7094 (1999)

    Article  ADS  Google Scholar 

  42. E. Beaurepaire, A.C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, Full-field optical coherence microscopy. Opt. Lett. 23, 244–246 (1998)

    Article  ADS  Google Scholar 

  43. A. Dubois, L. Vabre, A.C. Boccara, Sinusoidally phase-modulated interference microscope for high-speed high-resolution topographic imagery. Opt. Lett. 26, 1873 (2001)

    Article  ADS  Google Scholar 

  44. A. Dubois, L. Vabre, A.C. Boccara, E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41, 805–812 (2002)

    Article  ADS  Google Scholar 

  45. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, C. Boccara, Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43, 2874–2883 (2004)

    Article  ADS  Google Scholar 

  46. E. Cuche, P. Marquet, C. Depeursinge, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38, 6994–7001 (1999)

    Article  ADS  Google Scholar 

  47. E. Cuche, P. Marquet, C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39, 4070–4075 (2000)

    Article  ADS  Google Scholar 

  48. E. Umetsu, K.P. Chan, N. Tanno, Non-scanning optical coherence tomography using off-axis interferometry with an angular-dispersion imaging scheme. Opt. Rev. 9, 70–74 (2002)

    Article  Google Scholar 

  49. M. Gross, M. Atlan, E. Absil, Noise and aliases in off-axis and phase-shifting holography. Appl. Opt. 47, 1757–1766 (2008)

    Article  ADS  Google Scholar 

  50. K. Jeong, J.J. Turek, D.D. Nolte, Fourier-domain digital holographic optical coherence imaging of living tissue. Appl. Opt. 46, 4999–5008 (2007)

    Article  ADS  Google Scholar 

  51. K. Jeong, J.J. Turek, D.D. Nolte, Imaging motility contrast in digital holography of tissue response to cytoskeletal anti-cancer drugs. Opt. Express 15, 14057–14064 (2007)

    Article  ADS  Google Scholar 

  52. K. Jeong, J.J. Turek, D.D. Nolte, Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography. J. Biomed. Opt. 15, 030514 (2010)

    Article  ADS  Google Scholar 

  53. K. Jeong, J.J. Turek, M.R. Melloch, D.D. Nolte, Multiple-scattering speckle in holographic optical coherence imaging. Appl. Phys. B Lasers Opt. 95, 617–625 (2009)

    Article  ADS  Google Scholar 

  54. D.D. Nolte, T. Cubel, L.J. Pyrak-Nolte, M.R. Melloch, Adaptive beam combining and interferometry using photorefractive quantum wells. J. Opt. Soc. Am. B 18, 195–205 (2001)

    Article  ADS  Google Scholar 

  55. I. Lahiri, L.J. Pyrak-Nolte, D.D. Nolte, M.R. Melloch, R.A. Kruger, G.D. BAcher, M.B. Klein, Laser-based ultrasound detection using photorefractive quantum wells. Appl. Phys. Lett. 73, 1041–1043 (1998)

    Article  ADS  Google Scholar 

  56. Y. Ding, R.M. Brubaker, D.D. Nolte, M.R. Melloch, A.M. Weiner, Femtosecond pulse shaping by dynamic holograms in photorefractive multiple quantum wells. Opt. Lett. 22, 718–721 (1997)

    Article  ADS  Google Scholar 

  57. Y. Ding, D.D. Nolte, M.R. Melloch, A.M. Weiner, Time-domain image processing using dynamic holography. IEEE J. Sel. Top. Quantum Elect. 4, 332–341 (1998)

    Article  Google Scholar 

  58. Y. Ding, A.M. Weiner, M.R. Melloch, D.D. Nolte, Adaptive all-order dispersion compensation of ultrafast laser pulses using dynamic spectral holography. Appl. Phys. Lett. 75, 3255 (1999)

    Article  ADS  Google Scholar 

  59. M. Dinu, K. Nakagawa, M.R. Melloch, A.M. Weiner, D.D. Nolte, Broadband low-dispersion diffraction of femtosecond pulses from photorefractive quantum wells. J. Opt. Soc. Am. B 17, 1313–1319 (2000)

    Article  ADS  Google Scholar 

  60. M. Dinu, D.D. Nolte, M.R. Melloch, Electroabsorption spectroscopy of effective-mass AlGaAs/GaAs Fibonacci superlattices. Phys. Rev. B 56, 1987 (1997)

    Article  ADS  Google Scholar 

  61. C.A. Tyson, J.M. Frazier (eds.), In Vitro Toxicity Indicators. Methods in Toxicology (Academic, San Diego, 1994)

    Google Scholar 

  62. L. de Ridder, Autologous confrontation of brain tumor derived spheroids with human dermal spheroids. Anticancer Res. 17, 4119–4120 (1997)

    Google Scholar 

  63. K. Groebe, W. Mueller-Klieser, On the relation between size of necrosis and diameter of tumor spheroids. Int. J. Radiat. Oncol. Biol. Phys. 34, 395–401 (1996)

    Article  Google Scholar 

  64. R. Hamamoto, K. Yamada, M. Kamihira, S. Iijima, Differentiation and proliferation of primary rat hepatocytes cultured as spheroids. J. Biochem. (Tokyo) 124, 972–979 (1998)

    Article  Google Scholar 

  65. G. Hamilton, Multicellular spheroids as an in vitro tumor model. Cancer Lett. 131, 29–34 (1998)

    Article  Google Scholar 

  66. P. Hargrave, P.W. Nicholson, D.T. Delpy, M. Firbank, Optical properties of multicellular tumour spheroids. Phys. Med. Biol. 41, 1067–1072 (1996)

    Article  Google Scholar 

  67. L.A. Kunz-Schughart, M. Kreutz, R. Knuechel, Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 79, 1–23 (1998)

    Article  Google Scholar 

  68. R. Sutherland, W. Inch, J. McCredie, J. Kruuv, Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 18, 491–495 (1970)

    Article  Google Scholar 

  69. L.A. Kunz-Schughart, Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol. Int. 23, 157–161 (1999)

    Article  Google Scholar 

  70. W. Mueller-Klieser, Biophys. J. 46, 343–348 (1984)

    Article  Google Scholar 

  71. J.P. Freyer, P.L. Schor, K.A. Jarrett, M. Neeman, L.O. Sillerud, Cellular energetics measured by phosphorus nuclear-magnetic-resonance spectroscopy are not correlated with chronic nutrient deficiency in multicellular tumor spheroids. Cancer Res. 51, 3831–3837 (1991)

    Google Scholar 

  72. W. Mueller-Klieser, Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273, 1109–1123 (1997)

    Google Scholar 

  73. D.D. Nolte, R. An, J.J. Turek, K. Jeong, Tissue dynamics spectroscopy for phenotypic profiling of drug effects in three-dimensional culture. Biomed. Opt. Express 3, 2825–2841 (2012)

    Article  Google Scholar 

  74. D.D. Nolte, R. An, J. Turek, K. Jeong, Tissue dynamics spectroscopy for three-dimensional tissue-based drug screening. JALA 16, 431–442 (2011)

    Google Scholar 

  75. K. Jeong, J.J. Turek, M.R. Melloch, D.D. Nolte, Functional imaging in photorefractive tissue speckle holography. Opt. Commun. 281, 1860–1869 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from NSF1263753-CBET and NIH NIBIB 1R01EB016582-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Nolte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Nolte, D.D., Jeong, K., Turek, J., French, P.M.W. (2015). Holographic Optical Coherence Imaging. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_31

Download citation

Publish with us

Policies and ethics