Skip to main content

Holography of Tissues

  • Chapter
  • First Online:
Optical Interferometry for Biology and Medicine

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 1))

Abstract

Living biological tissue is an unlikely candidate as a target for holographic imaging. It is strongly aberating, strongly scattering, strongly heterogeneous, nonstationary, anisotropic, and volumetric in extent. Coherent light propagating through it becomes spatially diverse (many scattered wave vectors) and temporally diverse (many scattered frequencies and phases). Holographic imaging, which requires a steady relative phase condition between a signal and a reference wave, is difficult under these conditions. Nonetheless, holographic techniques are increasingly being applied to probe the physical and chemical properties of living tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaurepaire, E., Boccara, A.C., Lebec, M., Blanchot, L., Saint-Jalmes, H.: Full-field optical coherence microscopy. Opt. Lett. 23, 244 (1998)

    Article  ADS  Google Scholar 

  2. Dubois, A., Grieve, K., Moneron, G., Lecaque, R., Vabre, L., Boccara, C.: Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43(14), 2874–2883 (2004)

    Article  ADS  Google Scholar 

  3. Jeong, K., Turek, J.J., Nolte, D.D.: Fourier-domain digital holographic optical coherence imaging of living tissue. Appl. Opt. 46, 4999–5008 (2007)

    Article  ADS  Google Scholar 

  4. Jeong, K., Turek, J.J., Nolte, D.D.: Speckle fluctuation spectroscopy of intracellular motion in living tissue using coherence-domain digital holography. J. Biomed. Opt. 15(3), 030514 (2010)

    Article  ADS  Google Scholar 

  5. Cuche, E., Marquet, P., Depeursinge, C.: Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. 38(34), 6994–7001 (1999)

    Article  ADS  Google Scholar 

  6. Schnars, U., Juptner, W.P.O.: Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13(9), R85–R101 (2002)

    Article  ADS  Google Scholar 

  7. Nolte, D.D. (ed.): Photorefractive effects and materials. Kluwer Academic Publishers, Dordrecht (1995)

    Book  Google Scholar 

  8. Nolte, D.D., Cubel, T., Pyrak-Nolte, L.J., Melloch, M.R.: Adaptive beam combining and interferometry using photorefractive quantum wells. J. Opt. Soc. Am. B 18, 195–205 (2001)

    Article  ADS  Google Scholar 

  9. Peng, L., Varma, M.M., Cho, W., Regnier, F.E., Nolte, D.D.: Adaptive interferometry of protein on a BioCD. Appl. Opt. 46, 5384–5395 (2007)

    Article  ADS  Google Scholar 

  10. Zeldovich, B.Y., Pilipetsky, N.F., Shkunov, V.V.: Principles of phase conjugation. Optical sciences. Springer, Berlin (1985)

    Google Scholar 

  11. Sakai, J.-I.: Phase conjugate optics. McGraw-Hill, New York (1992)

    Google Scholar 

  12. Gower, M., Proch, D. (eds.): Optical phase conjugation. Springer, Berlin (1994)

    Google Scholar 

  13. Yaqoob, Z., Psaltis, D., Feld, M.S., Yang, C.H.: Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2(2), 110–115 (2008)

    Article  ADS  Google Scholar 

  14. Glass, A.M., von der Linde, D., Negran, T.J.: High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233 (1974)

    Article  ADS  Google Scholar 

  15. Feinberg, J.: Photorefractive nonlinear optics. Phys. Today 41, 46 (1988)

    Article  Google Scholar 

  16. Glass, A.M., Johnson, A.M., Olson, D.H., Simpson, W., Ballman, A.A.: Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect. Appl. Phys. Lett. 44(10), 948–950 (1984)

    Article  ADS  Google Scholar 

  17. Nolte, D.D., Melloch, M.R.: Photorefractive quantum wells and thin films. In: Nolte, D.D. (ed.) Photorefractive Effects and Materials. Kluwer Academic Publishers, Dordrecht (1995)

    Chapter  Google Scholar 

  18. Nolte, D.D.: Semi-insulating semiconductor heterostructures: optoelectronic properties and applications. J. Appl. Phys. 85, 6259 (1999)

    Article  ADS  Google Scholar 

  19. Ducharme, S., Scott, J.C., Twieg, R.J., Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66(14), 1846–1849 (1991)

    Article  ADS  Google Scholar 

  20. Meerholz, K., Volodin, B.L., Sandalphon, Kippelen, B., Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100-percent. Nature 371(6497), 497–500 (1994)

    Google Scholar 

  21. Hyde, S.C.W., Barry, N.P., Jones, R., Dainty, J.C., French, P.M.W., Klein, M.B., Wechsler, B.A.: Depth-resolved holographic imaging through scattering media by photorefraction. Opt. Lett. 20, 1331 (1995)

    Article  ADS  Google Scholar 

  22. Hyde, S.C.W., Jones, R., Barry, N.P., Dainty, J.C., French, P.M.W., Kwolek, K.M., Nolte, D.D., Melloch, M.R.: Depth-resolved holography through turbid media using photorefraction. IEEE J. Sel. Top. Quantum Electron. 2(4), 965–975 (1996)

    Article  Google Scholar 

  23. Yu, P., Mustata, M., French, P.M.W., Turek, J.J., Melloch, M.R., Nolte, D.D.: Holographic optical coherence imaging of tumor spheroids. Appl. Phys. Lett. 83, 575 (2003)

    Article  ADS  Google Scholar 

  24. Salvador, M., Prauzner, J., Kober, S., Meerholz, K., Jeong, K., Nolte, D.D.: Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device. Appl. Phys. Lett. 93(23) (2008)

    Google Scholar 

  25. Jeong, K., Peng, L.L., Nolte, D.D., Melloch, M.R.: Fourier-domain holography in photorefractive quantum-well films. Appl. Opt. 43(19), 3802–3811 (2004)

    Article  ADS  Google Scholar 

  26. Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4), 453–465 (2003)

    Article  Google Scholar 

  27. Cukierman, E., Pankov, R., Stevens, D.R., Yamada, K.M.: Taking cell-matrix adhesions to the third dimension. Science 294(5547), 1708–1712 (2001)

    Article  ADS  Google Scholar 

  28. Webb, D.J., Horwitz, A.F.: New dimensions in cell migration. Nat. Cell Biol. 5(8), 690 (2003)

    Article  Google Scholar 

  29. Keller, P.J., Pampaloni, F., Stelzer, E.H.K.: Life sciences require the third dimension. Curr. Opin. Cell Biol. 18(1), 117–124 (2006)

    Article  Google Scholar 

  30. Pampaloni, F., Reynaud, E.G., Stelzer, E.H.K.: The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007)

    Article  Google Scholar 

  31. Voytik-Harbin, S.L.: Three-dimensional extracellular matrix substrates for cell culture. Meth. Cell Biol. 63, 561 (2001)

    Article  Google Scholar 

  32. Lee, J., Cuddihy, M.J., Kotov, N.A.: Three-dimensional cell culture matrices: state of the art. Tissue Eng. B Rev. 14(1), 61–86 (2008)

    Article  Google Scholar 

  33. Bissell, M.J., Myers, C., Lee, G., Lee, E., Rizki, A., Mian, S., Gray, J., Radisky, D.: A breast cancer progression model: the importance of three-dimensional tissue architecture and metalloproteinases. Breast Cancer Res. 7, S6–S6 (2005)

    Article  Google Scholar 

  34. Johnson, K.R., Leight, J.L., Weaver, V.M.: Demystifying the effects of a three-dimensional microenvironment in tissue morphogenesis. In: Wang, Y.L., Discher, D.E. (eds.) Cell Mechanics. Methods in Cell Biology, vol. 83, pp. 547–583. Elsevier Academic Press, San Diego (2007)

    Google Scholar 

  35. Lee, G.Y., Kenny, P.A., Lee, E.H., Bissell, M.J.: Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4(4), 359–365 (2007)

    Article  Google Scholar 

  36. Kenny, P.A.: Three-dimensional extracellular matrix culture models of EGFR signalling and drug response. Biochem. Soc. Trans. 35, 665–668 (2007)

    Article  Google Scholar 

  37. Pizzo, A.M., Kokini, K., Vaughn, L.C., Waisner, B.Z., Voytik-Harbin, S.L.: Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J. Appl. Physiol. 98(5), 1909–1921 (2005)

    Article  Google Scholar 

  38. Roeder, B.A., Kokini, K., Sturgis, J.E., Robinson, J.P., Voytik-Harbin, S.L.: Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124(2), 214–222 (2002)

    Article  Google Scholar 

  39. Pedersen, J.A., Swartz, M.A.: Mechanobiology in the third dimension. Ann. Biomed. Eng. 33(11), 1469–1490 (2005)

    Article  Google Scholar 

  40. Voytik-Harbin, S.L., Rajwa, B., Robinson, J.P.: Three-dimensional imaging of extracellular matrix and extracellular matrix-cell interactions. Meth. Cell Biol. 63, 583 (2001)

    Article  Google Scholar 

  41. Moerner, W.E., Fromm, D.P.: Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74(8), 3597–3619 (2003)

    Article  ADS  Google Scholar 

  42. Webb, R.H.: Confocal optical microscopy. Rep. Prog. Phys. 59(3), 427–471 (1996)

    Article  ADS  Google Scholar 

  43. Cahalan, M.D., Parker, I., Wei, S.H., Miller, M.J.: Two-photon tissue imaging: Seeing the immune system in a fresh light. Nat. Rev. Immunol. 2(11), 872–880 (2002)

    Article  Google Scholar 

  44. Konig, K.: Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000)

    Article  Google Scholar 

  45. Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Hecksher-Sorensen, J., Baldock, R., Davidson, D.: Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296(5567), 541–545 (2002)

    Article  ADS  Google Scholar 

  46. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., Stelzer, E.H.K.: Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686), 1007–1009 (2004)

    Article  ADS  Google Scholar 

  47. Grinnell, F., Rocha, L.B., Iucu, C., Rhee, S., Jiang, H.M.: Nested collagen matrices: a new model to study migration of human fibroblast populations in three dimensions. Exp. Cell Res. 312(1), 86–94 (2006)

    Google Scholar 

  48. Friedl, P., Brocker, E.B.: The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57(1), 41–64 (2000)

    Article  Google Scholar 

  49. Friedl, P., Zanker, K.S., Brocker, E.B.: Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43(5), 369–378 (1998)

    Article  Google Scholar 

  50. Gustafsson, M.G.L.: Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102(37), 13081–13086 (2005)

    Article  ADS  Google Scholar 

  51. Klar, T.A., Jakobs, S., Dyba, M., Egner, A., Hell, S.W.: Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97(15), 8206–8210 (2000)

    Article  ADS  Google Scholar 

  52. de Ridder, L.: Autologous confrontation of brain tumor derived spheroids with human dermal spheroids. Anticancer Res. 17, 4119–4120 (1997)

    Google Scholar 

  53. Groebe, K., Mueller-Klieser, W.: On the relation between size of necrosis and diameter of tumor spheroids. Int. J. Radiat. Oncol. Biol. Phys. 34, 395–401 (1996)

    Article  Google Scholar 

  54. Hamamoto, R., Yamada, K., Kamihira, M., Iijima, S.: Differentiation and proliferation of primary rat hepatocytes cultured as spheroids. J. Biochem. (Tokyo) 124, 972–979 (1998)

    Article  Google Scholar 

  55. Hamilton, G.: Multicellular spheroids as an in vitro tumor model. Cancer Lett. 131, 29–34 (1998)

    Article  MathSciNet  Google Scholar 

  56. Hargrave, P., Nicholson, P.W., Delpy, D.T., Firbank, M: Optical properties of multicellular tumour spheroids. Phys. Med. Biol. 41, 1067–1072 (1996)

    Article  Google Scholar 

  57. Kunz-Schughart, L.A., Kreutz, M., Knuechel, R.: Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 79, 1–23 (1998)

    Article  Google Scholar 

  58. Mueller-Klieser, W. Biophys. J. 46, 343–348 (1984)

    Article  Google Scholar 

  59. Freyer, P., Schor, P.L., Jarrett, K.A., Neeman, M., Sillerud, L.O. Cancer Res. 51, 3831–3837 (1991)

    Google Scholar 

  60. Mueller-Klieser, W.: Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273, 1109–1123 (1997)

    Google Scholar 

  61. Hyde, S.C.W., Barry, N.P., Jones, R., Dainty, J.C., French, P.M.W.: Sub-100 micron depth-resolved holographic imaging through scattering media in the near-infrared. Opt. Lett. 20(22), 2330–2332 (1995)

    Article  ADS  Google Scholar 

  62. Nolte, D.D., Jeong, K., French, P.M.W., Turek, J.J.: Holographic optical coherence imaging. In: Drexler, J.F.A.W. (ed.) Optical Coherence Tomography: Technology and Applications. Springer, Berlin (2008)

    Google Scholar 

  63. Vabre, L., Dubois, A., Boccara, A.C.: Thermal-light full-field optical coherence tomography. Opt. Lett. 27(7), 530–532 (2002)

    Article  ADS  Google Scholar 

  64. Jeong, K., Peng, L., Turek, J.J., Melloch, M.R., Nolte, D.D.: Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye. Appl. Opt. 44(10), 1798–1806 (2005)

    Article  ADS  Google Scholar 

  65. Karamata, B., Leutenegger, M., Laubscher, M., Bourquin, S., Lasser, T., Lambelet, P.: Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22(7), 1380–1388 (2005)

    Article  ADS  Google Scholar 

  66. Potton, R.J.: Reciprocity in optics. Rep. Prog. Phys. 67(5), 717–754 (2004)

    Article  ADS  Google Scholar 

  67. McDowell, E.J., Cui, M., Vellekoop, I.M., Senekerimyan, V., Yaqoob, Z., Yang, C.H.: Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation. J. Biomed. Opt. 15(2) (2010)

    Google Scholar 

  68. Cui, M., McDowell, E.J., Yang, C.H.: An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express 18(1), 25–30 (2010)

    Article  ADS  Google Scholar 

  69. Yu, P., Peng, L., Mustata, M., Turek, J.J., Melloch, M.R., Nolte, D.D.: Time-dependent speckle in holographic optical coherence imaging and the state of health of tumor tissue. Opt. Lett. 29(1), 68–70 (2004)

    Article  ADS  Google Scholar 

  70. Jeong, K., Turek, J.J., Nolte, D.D.: Imaging motility contrast in digital holography of tissue response to cytoskeletal anti-cancer drugs. Opt. Express 15, 14057 (2007)

    Article  ADS  Google Scholar 

  71. Boas, D.A., Bizheva, K.K., Siegel, A.M.: Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media. Opt. Lett. 23(5), 319–321 (1998)

    Article  ADS  Google Scholar 

  72. Bizheva, K.K., Siegel, A.M., Boas, D.A.: Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy. Phys. Rev. E 58(6), 7664–7667 (1998)

    Article  ADS  Google Scholar 

  73. Wax, A., Yang, C.H., Dasari, R.R., Feld, M.S.: Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering. Appl. Opt. 40(24), 4222–4227 (2001)

    Article  ADS  Google Scholar 

  74. Petoukhova, A.L., Steenbergen, W., van Leeuwen, T.G., de Mul, F.F.M.: Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime. Appl. Phys. Lett. 81(4), 595–597 (2002)

    Article  ADS  Google Scholar 

  75. Varghese, B., Rajan, V., Van Leeuwen, T.G., Steenbergen, W.: Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry. J. Biomed. Opt. 12(2) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nolte, D.D. (2012). Holography of Tissues. In: Optical Interferometry for Biology and Medicine. Bioanalysis, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0890-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0890-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0889-5

  • Online ISBN: 978-1-4614-0890-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics