Skip to main content

Alzheimer’s Disease

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Compendium of Inflammatory Diseases

Synonyms

Alzheimer disease; Inflammation; Neurodegeneration

Definition

Alzheimer disease (AD) is a neurodegenerative disorder that is the most common cause of dementia in the elderly and is frequently accompanied by emotional disorders, including agitation. The neuro-pathological hallmarks of AD include intracellular neurofibrillary tangles (NFTs) and deposition of amyloid-β (Aβ) in a compact structure of outside neurons and inflammatory processes. Aβ is processed from a larger protein called amyloid precursor protein (APP) by processing enzymes (α-, β-, and γ-secretases) and is deposited in extracellular plaques known as senile plaques. Another pathological characteristic in the AD brain is intracellular NFTs composed of the microtubule-associated protein tau (MAP-tau), which undergoes chemical changes (hyperphosphorylation) and then begins to pair with other threads; it is accumulated inside the neuron cell to cause microtubule destabilization (Azizi and Mirshafiey 2012; Reitz et...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., & McGeer, P. L. (2000). Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21(3), 383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ALZ.org. (2012). Treatments for Alzheimer’s disease. Alzheimer’s Association. http://www.alz.org/alzheimers_disease_standard_prescriptions.asp

  • Azizi, G., & Mirshafiey, A. (2012). The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis. Immunopharmacology and Immunotoxicology, 34(6), 881–895.

    Article  CAS  PubMed  Google Scholar 

  • Azizi, G., Navabi, S. S., Al-Shukaili, A., Seyedzadeh, M. H., Yazdani, R., & Mirshafiey, A. (2015). The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease. Sultan Qaboos University Medical Journal, 15(3), e305–e316. doi: 10.18295/squmj.2015.15.03.002. Epub 2015 Aug 24. Review. PMID: 26357550.

    Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923.

    Article  CAS  PubMed  Google Scholar 

  • Fredman, L., James, B. D., Johnson, T. J., Scholz, K. P., & Weuve, J. (2012). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 8(2), 131–168.

    Article  Google Scholar 

  • Galimberti, D., & Scarpini, E. (2011). Inflammation and oxidative damage in Alzheimer’s disease: friend or foe? Frontiers in Bioscience (Scholar Edition), 3, 252–266.

    Article  Google Scholar 

  • Gorlovoy, P., Larionov, S., Pham, T. T., & Neumann, H. (2009). Accumulation of tau induced in neurites by microglial proinflammatory mediators. FASEB Journal, 23(8), 2502–2513.

    Article  CAS  PubMed  Google Scholar 

  • Hickman, S. E., & El Khoury, J. (2010). Mechanisms of mononuclear phagocyte recruitment in Alzheimer’s disease. CNS & Neurological Disorders Drug Targets, 9, 168–173.

    Article  CAS  Google Scholar 

  • Hollingworth, P., Harold, D., Sims, R., Gerrish, A., Lambert, J. C., & Carrasquillo, M. M. (2011). Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature Genetics, 43(5), 429–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaria, R. N. (1999). Microglia and Alzheimer’s disease. Current Opinion in Hematology, 6(1), 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. S., Lim, H. K., Lee, J. Y., Kim, D. J., Park, S., Lee, C., & Lee, C. U. (2008). Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neuroscience Letters, 436, 196–200.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. H., Cheng, R., Barral, S., Reitz, C., Medrano, M., Lantigua, R., Jiménez-Velazquez, I. Z., Rogaeva, E., St George-Hyslop, P. H., & Mayeux, R. (2011). Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Archives of Neurology, 68(3), 320–328.

    Article  PubMed  Google Scholar 

  • Lumpkins, K., Bochicchio, G. V., Zagol, B., Ulloa, K., Simard, J. M., Schaub, S., Meyer, W., & Scalea, T.(2010). Plasma levels of the beta chemokine regulated upon activation, normal T cell expressed, and secreted (RANTES) correlate with severe brain injury. Journal of Trauma, 64, 358–361.

    Article  Google Scholar 

  • Man, S. M., Ma, Y. R., Shang, D. S., Zhao, W. D., Li, B., Guo, D. W., Fang, W. G., Zhu, L., & Chen, Y. H. (2007). Peripheral T cells overexpress MIP-1alpha to enhance its transendothelial migration in Alzheimer’s disease. Neurobiology of Aging, 28, 485–496.

    Article  CAS  PubMed  Google Scholar 

  • Mandrekar-Colucci, S., & Landreth, G. E. (2010). Microglia and inflammation in Alzheimer’s disease. CNS & Neurological Disorders Drug Targets, 9(2), 156–167.

    Article  CAS  Google Scholar 

  • Mohsenzadegan, M., & Mirshafiey, A. (2012). The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iranian Journal of Allergy, Asthma, and Immunology, 11(3), 203–216.

    CAS  PubMed  Google Scholar 

  • Olgiati, P., Politis, A., Malitas, P., Albani, D., Dusi, S., Polito, L., De Mauro, S., Zisaki, A., Piperi, C., Stamouli, E., Mailis, A., Batelli, S., Forloni, G., De Ronchi, D., Kalofoutis, A., Liappas, I., & Serretti, A. (2010). APOE epsilon-4 allele and cytokine production in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 25(4), 338–344.

    Article  PubMed  Google Scholar 

  • Parachikova, A., & Cotman, C. W. (2007). Reduced CXCL12/CXCR4 results in impaired learning and is downregulated in a mouse model of Alzheimer disease. Neurobiology of Disease, 28, 143–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp, J., Bacher, M., Kolsch, H., Noelker, C., Deuster, O., Dodel, R., & Jessen, F. (2009). Macrophage migration inhibitory factor in mild cognitive impairment and Alzheimer’s disease. Journal of Psychiatric Research, 43, 749–753.

    Article  PubMed  Google Scholar 

  • Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11(2), 111–128.

    PubMed  PubMed Central  Google Scholar 

  • Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Reviews Neurology, 7(3), 137–152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, S., Callaghan, D., Juzwik, C., Xiong, H., Huang, P., & Zhang, W. (2010). ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer’s disease. Journal of Neurochemistry, 114(6), 1590–1604.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova, A., Hill, M. D., Rahimi, F., Warden, L. A., Halliday, G. M., & Shepherd, C. E. (2009). Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathology, 19(3), 392–398.

    Article  CAS  PubMed  Google Scholar 

  • Steele, M. L., & Robinson, S. R. (2010). Reactive astrocytes give neurons less support: implications for Alzheimer’s disease. Neurobiology of Aging, 33(2), 423.e1-13.

    PubMed  Google Scholar 

  • Strang, F., Scheichl, A., Chen, Y. C., Wang, X., Htun, N. M., Bassler, N., Eisenhardt, S. U., Habersberger, J., & Peter, K. (2012). Amyloid plaques dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathology, 22(3), 337–346.

    Article  CAS  PubMed  Google Scholar 

  • Tripathy, D., Thirumangalakudi, L., & Grammas, P. (2010). RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiology of Aging, 31, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Tuppo, E., & Arias, H. R. (2005). The role of inflammation in Alzheimer’s disease. International Journal of Biochemistry and Cell Biology, 37(2), 289–305.

    Article  CAS  PubMed  Google Scholar 

  • Vepsalainen, S., Helisalmi, S., Mannermaa, A., Pirttilä, T., Soininen, H., & Hiltunen, M. (2009). Combined risk effects of IDE and NEP gene variants on Alzheimer disease. Journal of Neurology, Neurosurgery, and Psychiatry, 80(11), 1268–1270.

    Article  CAS  PubMed  Google Scholar 

  • Zotova, E., Nicoll, J. A., Kalaria, R., Holmes, C., & Boche, D. (2010). Inflammation in Alzheimer’s disease: relevance to pathogenesis and therapy. Alzheimer’s Research & Therapy, 2(1), 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Basel

About this entry

Cite this entry

Azizi, G., Mirshafiey, A. (2016). Alzheimer’s Disease. In: Parnham, M. (eds) Compendium of Inflammatory Diseases. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0620-6_98-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0620-6_98-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Birkhäuser, Basel

  • Online ISBN: 978-3-0348-0620-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Alzheimer’s Disease
    Published:
    24 June 2016

    DOI: https://doi.org/10.1007/978-3-0348-0620-6_98-2

  2. Original

    Alzheimer Disease
    Published:
    28 April 2016

    DOI: https://doi.org/10.1007/978-3-0348-0620-6_98-1