Skip to main content

Diagrammatic Methods in Classical Perturbation Theory

  • Reference work entry
Mathematics of Complexity and Dynamical Systems
  • 502 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Examples

Trees and Graphical Representation

Small Divisors

Multiscale Analysis

Resummation

Generalizations

Conclusions and Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Dynamical system:

Let \({W\subseteq\mathbb{R}^{N}}\) be an open set and \({f \colon W\times\mathbb{R}\to\mathbb{R}^{N}}\) be a smooth function. The ordinary differential equation \({\dot x=f(x,t)}\) on W defines a continuous dynamical system. A discrete dynamical system on W is defined by a map \({x \to x'=F(x)}\), with F depending smoothly on x.

Hamiltonian system:

Let \({\mathcal A}\subseteq\mathbb{R}^{d}\) be an open set and \( \mathcal{H} \colon \mathcal{A}\times\mathbb{R}^{d}\times\mathbb{R}\to\mathbb{R}\) be a smooth function (\({\mathcal{A}\times\mathbb{R}^{d}}\) is called the phase space). Consider the system of ordinary differential equations \( \dot q_{k}=\partial\mathcal{H}(q,p,t)/\partial p_{k}\), \( \dot p_{k}=-\partial\mathcal{H}(q,p,t)/\partial q_{k}\), for \( k=1, \dots, d \). The equations are called Hamilton equations, and \({\mathcal{H}}\) is called a Hamiltonian function. A dynamical system described by Hamilton equations is called a Hamiltonian system.

Integrable system:

A Hamiltonian system is called integrable if there exists a system of coordinates \( (\alpha ,A)\in\mathbb{T}^{d}\times\mathbb{R}^{d}\), called angle-action variables, such that in these coordinates the motion is \( (\alpha ,A)\to(\alpha + \omega(A)t,A) \), for some smooth function \({\omega(A)}\). Hence in these coordinates the Hamiltonian function \({\mathcal{H}}\) depends only on the action variables, \( \mathcal{H}=\mathcal{H}_{0}(A) \).

Invariant torus:

Given a continuous dynamical system we say that the motion occurs on an invariant d‑torus if it takes place on a d‑dimensional manifold and its position on the manifold is identified through a coordinate in \({\mathbb{T}^{d}}\). In an integrable Hamiltonian system all phase space is filled by invariant tori. In a quasi-integrable system the KAM theorem states that most of the invariant tori persist under perturbation, in the sense that the relative Lebesgue measure of the fraction of phase space filled by invariant tori tends to 1 as the perturbation tends to disappear. The persisting invariant tori are slight deformations of the unperturbed invariant tori.

Quasi-integrable system:

A quasi-integrable system is a Hamiltonian system described by a Hamiltonian function of the form \( \mathcal{H}=\mathcal{H}_{0}(A)+\varepsilon f(\alpha,A) \), with \({(\alpha,A)}\) angle-action variables, \({\varepsilon}\) a small real parameter and f periodic in its arguments \({\alpha}\).

Quasi-periodic motion:

Consider the motion \( \alpha\to\alpha+\omega t \) on \({\mathbb{T}^{2}}\), with \({\omega=(\omega_{1},\omega_{2})}\). If \({\omega_{1}/\omega_{2}}\) is rational, the motion is periodic, that is there exists \({T\mathchar"313E 0}\) such that \({\omega_{1}T=\omega_{2}T=0}\) mod \({2\pi}\). If \({\omega_{1}/\omega_{2}}\) is irrational, the motion never returns to its initial value. On the other hand it densely fills \({\mathbb{T}^{2}}\), in the sense that it comes arbitrarily close to any point of \({\mathbb{T}^{2}}\). We say in that case that the motion is quasi-periodic. The definition extends to \({\mathbb{T}^{d}}\), \({d\mathchar"313E 2}\): a linear motion \({\alpha\to\alpha+\omega t}\) on \({\mathbb{T}^{d}}\) is quasi-periodic if the components of \({\omega}\) are rationally independent, that is if \({\omega\cdot\upnu = \omega_{1}\upnu_{1}+ \dots +\omega_{d}\upnu_{d}=0}\) for \({\upnu\in\mathbb{Z}^{d}}\) if and only if \({\upnu=0}\) (\({a \cdot b}\) is the standard scalar product between the two vectors a, b). More generally we say that a motion on a manifold is quasi-periodic if, in suitable coordinates, it can be described as a linear quasi-periodic motion. The vector ω is usually called the frequency or rotation vector.

Renormalization group :

By renormalization group one denotes the set of techniques and concepts used to study problems where there are some scale invariance properties. The basic mechanism consists in considering equations depending on some parameters and defining some transformations on the equations, including a suitable rescaling, such that after the transformation the equations can be expressed, up to irrelevant corrections, in the same form as before but with new values for the parameters.

Torus :

The 1-torus \({\mathbb{T}}\) is defined as \({\mathbb{T}=\mathbb{R}/2\pi\mathbb{Z}}\), that is the set of real numbers defined modulo \({2\pi}\) (this means that x is identified with y if \({x-y}\) is a multiple of \({2\pi}\)). So it is the natural domain of an angle. One defines the d‑torus \({\mathbb{T}^{d}}\) as a product of d 1-tori, that is \({\mathbb{T}^{d}= \mathbb{T}\times \dots \times\mathbb{T}}\). For instance one can imagine \({\mathbb{T}^{2}}\) as a square with the opposite sides glued together.

Tree:

A graph is a collection of points, called nodes, and of lines which connect the nodes. A walk on the graph is a sequence of lines such that any two successive lines in the sequence share a node; a walk is nontrivial if it contains at least one line. A tree is a planar graph with no closed loops, that is, such that there is no nontrivial walk connecting any node to itself. An oriented tree is a tree with a special node such that all lines of the tree are oriented toward that node. If we add a further oriented line connecting the special node to another point, called the root, we obtain a rooted tree (see Fig. 1 in Sect. “Trees and Graphical Representation”).

Bibliography

Primary Literature

  1. Arnold VI (1963) Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian (Russian). Uspehi Mat Nauk 18(5):13–40

    MathSciNet  Google Scholar 

  2. Arnold VI, Kozlov VV, Neĭshtadt AI (1988) Dynamical systems III, Encyclopaedia of Mathematical Sciences, vol 3. Springer, Berlin

    Google Scholar 

  3. Bartuccelli MV, Gentile G (2002) Lindstedt series for perturbations of isochronous systems: a review of the general theory. Rev Math Phys 14(2):121–171

    Article  MathSciNet  MATH  Google Scholar 

  4. Berretti A, Gentile G (1999) Scaling properties for the radius of convergence of a Lindstedt series: the standard map. J Math Pures Appl 78(2):159–176

    MathSciNet  MATH  Google Scholar 

  5. Berretti A, Gentile G (2000) Scaling properties for the radius of convergence of a Lindstedt series: generalized standard maps. J Math Pures Appl 79(7):691–713

    MathSciNet  MATH  Google Scholar 

  6. Berretti A, Gentile G (2001) Bryuno function and the standard map. Comm Math Phys 220(3):623–656

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonetto F, Gallavotti G, Gentile G, Mastropietro V (1998) Quasi linear flows on tori: regularity of their linearization. Comm Math Phys 192(3):707–736

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonetto F, Gallavotti G, Gentile G, Mastropietro V (1998) Lindstedt series, ultraviolet divergences and Moser's theorem. Ann Scuola Norm Sup Pisa Cl Sci 26(3):545–593

    MathSciNet  MATH  Google Scholar 

  9. Bourgain J (1998) Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann of Math 148(2):363–439

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain J (2005) Green's function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies 158. Princeton University Press, Princeton

    Google Scholar 

  11. Bricmont J, Gawędzki K, Kupiainen A (1999) KAM theorem and quantum field theory. Comm Math Phys 201(3):699–727

    Google Scholar 

  12. Chierchia L, Falcolini C (1994) A direct proof of a theorem by Kolmogorov in Hamiltonian systems. Ann Scuola Norm Sup Pisa Cl Sci 21(4):541–593

    MathSciNet  MATH  Google Scholar 

  13. Costin O, Gallavotti G, Gentile G, Giuliani A (2007) Borel summability and Lindstedt series. Comm Math Phys 269(1):175–193

    Article  MathSciNet  MATH  Google Scholar 

  14. Craig W, Wayne CE (1993) Newton's method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math 46(11):1409–1498

    Article  MathSciNet  MATH  Google Scholar 

  15. Davie AM (1994) The critical function for the semistandard map. Nonlinearity 7(1):219–229

    Article  MathSciNet  MATH  Google Scholar 

  16. Eliasson LH (1996) Absolutely convergent series expansions for quasi periodic motions. Math Phys Electron J 2(4):1–33

    MathSciNet  Google Scholar 

  17. Gallavotti G (1983) The elements of mechanics. Texts and Monographs in Physics. Springer, New York

    Google Scholar 

  18. Gallavotti G (1994) Twistless KAM tori. Comm Math Phys 164(1):145–156

    Article  MathSciNet  MATH  Google Scholar 

  19. Gallavotti G (1994) Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems. A review. Rev Math Phys 6(3):343–411

    Article  MathSciNet  MATH  Google Scholar 

  20. Gallavotti G (2001) Renormalization group in statistical mechanics and mechanics: gauge symmetries and vanishing beta functions, Renormalization group theory in the new millennium III. Phys Rep 352(4–6):251–272

    Article  MathSciNet  MATH  Google Scholar 

  21. Gallavotti G (2006) Classical mechanics. In: Françoise JP, Naber GL, Tsun TS (eds) Encyclopedia of Mathematical Physics, vol 1. Elsevier, Oxford

    Google Scholar 

  22. Gallavotti G, Gentile G (2002) Hyperbolic low-dimensional invariant tori and summations of divergent series. Comm Math Phys 227(3):421–460

    Article  MathSciNet  MATH  Google Scholar 

  23. Gallavotti G, Bonetto F, Gentile G (2004) Aspects of ergodic, qualitative and statistical theory of motion. Texts and Monographs in Physics. Springer, Berlin

    Book  Google Scholar 

  24. Gallavotti G, Gentile G, Giuliani A (2006) Fractional Lindstedt series. J Math Phys 47(1):1–33

    Article  MathSciNet  Google Scholar 

  25. Gallavotti G, Gentile G, Mastropietro V (1999) A field theory approach to Lindstedt series for hyperbolic tori in three time scales problems. J Math Phys 40(12):6430–6472

    Article  MathSciNet  MATH  Google Scholar 

  26. Gentile G (1995) Whiskered tori with prefixed frequencies and Lyapunov spectrum. Dyn Stab Syst 10(3):269–308

    Article  MathSciNet  MATH  Google Scholar 

  27. Gentile G (2003) Quasi-periodic solutions for two-level systems. Comm Math Phys 242(1-2):221–250

    MathSciNet  MATH  Google Scholar 

  28. Gentile G (2006) Brjuno numbers and dynamical systems. Frontiers in number theory, physics, and geometry. Springer, Berlin

    Google Scholar 

  29. Gentile G (2006) Diagrammatic techniques in perturbation theory. In: Françoise JP, Naber GL, Tsun TS (eds) Encyclopedia of Mathematical Physics, vol 2. Elsevier, Oxford

    Google Scholar 

  30. Gentile G (2006) Resummation of perturbation series and reducibility for Bryuno skew-product flows. J Stat Phys 125(2):321–361

    Article  MathSciNet  Google Scholar 

  31. Gentile G (2007) Degenerate lower-dimensional tori under the Bryuno condition. Ergod Theory Dyn Syst 27(2):427–457

    Article  MathSciNet  MATH  Google Scholar 

  32. Gentile G, Bartuccelli MV, Deane JHB (2005) Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms. J Math Phys 46(6):1–21

    Article  MathSciNet  Google Scholar 

  33. Gentile G, Bartuccelli MV, Deane JHB (2006) Quasiperiodic attractors, Borel summability and the Bryuno condition for strongly dissipative systems. J Math Phys 47(7):1–10

    Article  MathSciNet  Google Scholar 

  34. Gentile G, Bartuccelli MV, Deane JHB (2007) Bifurcation curves of subharmonic solutions and Melnikov theory under degeneracies. Rev Math Phys 19(3):307–348

    Article  MathSciNet  MATH  Google Scholar 

  35. Gentile G, Cortez DA, Barata JCA (2005) Stability for quasi-periodically perturbed Hill's equations. Comm Math Phys 260(2):403–443

    Article  MathSciNet  MATH  Google Scholar 

  36. Gentile G, Gallavotti G (2005) Degenerate elliptic tori. Comm Math Phys 257(2):319–362

    Article  MathSciNet  MATH  Google Scholar 

  37. Gentile G, Mastropietro V (1996) Methods for the analysis of the Lindstedt series for KAM tori and renormalizability in classical mechanics. A review with some applications. Rev Math Phys 8(3):393–444

    Article  MathSciNet  MATH  Google Scholar 

  38. Gentile G, Mastropietro V (2001) Renormalization group for one-dimensional fermions. A review on mathematical results. Renormalization group theory in the new millennium III. Phys Rep 352(4–6):273–437

    Article  MathSciNet  MATH  Google Scholar 

  39. Gentile G, Mastropietro V (2004) Construction of periodic solutions of nonlinear wave equations with Dirichlet boundary conditions by the Lindstedt series method. J Math Pures Appl 83(8):1019–1065

    MathSciNet  MATH  Google Scholar 

  40. Gentile G, Mastropietro V, Procesi M (2005) Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions. Comm Math Phys 256(2):437–490

    Article  MathSciNet  MATH  Google Scholar 

  41. Gentile G, Procesi M (2006) Conservation of resonant periodic solutions for the one-dimensional nonlinear Schrödinger equation. Comm Math Phys 262(3):533–553

    Article  MathSciNet  MATH  Google Scholar 

  42. Gentile G, van Erp TS (2005) Breakdown of Lindstedt expansion for chaotic maps. J Math Phys 46(10):1–20

    Article  Google Scholar 

  43. Harary F (1969) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  44. Iserles A, Nørsett SP (1999) On the solution of linear differential equations in Lie groups. Royal Soc Lond Philos Trans Ser A Math Phys Eng Sci 357(1754):983–1019

    Google Scholar 

  45. Khanin K, Lopes Dias J, Marklof J (2007) Multidimensional continued fractions, dynamical renormalization and KAM theory. Comm Math Phys 270(1):197–231

    Article  MathSciNet  MATH  Google Scholar 

  46. Koch H (1999) A renormalization group for Hamiltonians, with applications to KAM tori. Ergod Theory Dyn Syst 19(2):475–521

    Article  MATH  Google Scholar 

  47. Kolmogorov AN (1954) On conservation of conditionally periodic motions for a small change in Hamilton's function (Russian). Dokl Akad Nauk SSSR 98:527–530

    MathSciNet  MATH  Google Scholar 

  48. Kuksin SB (1993) Nearly integrable infinite-dimensional Hamiltonian systems. Lecture Notes in Mathematics, vol 1556. Springer, Berlin

    Google Scholar 

  49. Levi-Civita T (1954) Opere matematiche. Memorie e note. Zanichelli, Bologna

    MATH  Google Scholar 

  50. MacKay RS (1993) Renormalisation in area-preserving maps. Advanced Series in Nonlinear Dynamics, 6. World Scientific Publishing, River Edge

    Google Scholar 

  51. Moser J (1962) On invariant curves of area-preserving mappings of an annulus. Nachr Akad Wiss Göttingen Math-Phys Kl. II 1962:1–20

    Google Scholar 

  52. Moser J (1967) Convergent series expansions for quasi-periodic motions. Math Ann 169:136–176

    Article  MathSciNet  MATH  Google Scholar 

  53. Poincaré H (1892–1899) Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris

    Google Scholar 

  54. Pöschel J (1982) Integrability of Hamiltonian systems on Cantor sets. Comm Pure Appl Math 35(5):653–696

    Google Scholar 

  55. Wintner A (1941) The analytic foundations of celestial mechanics. Princeton University Press, Princeton

    Google Scholar 

Books and Reviews

  1. Berretti A, Gentile G (2001) Renormalization group and field theoretic techniques for the analysis of the Lindstedt series. Regul Chaotic Dyn 6(4):389–420

    Article  MathSciNet  MATH  Google Scholar 

  2. Gentile G (1999) Diagrammatic techniques in perturbations theory, and applications. Symmetry and perturbation theory. World Science, River Edge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Gentile, G. (2012). Diagrammatic Methods in Classical Perturbation Theory. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_9

Download citation

Publish with us

Policies and ethics