Skip to main content

Rapid Tooling in Manufacturing

  • Living reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

Rapid tooling (RT) refers to the rapid production of parts that function as a tool (primarily mold tools such as mold inserts) as opposed to being a prototype or a functional part. These tools are produced by different additive manufacturing (AM), also previously known as rapid prototyping (RP) processes such as stereolithography (SL), fused deposition modeling (FDM), selective laser sintering/melting (SLS/SLM), 3D printing (3DP), and electron beam melting (EBM). These AM tools are then directly used as molds or used to produce molds for conventional manufacturing, such as vacuum and investment casting.

RT is generally categorized as soft or hard and direct or indirect tooling. The wide range of materials involved in tooling includes wax, wood, photopolymers, thermal polymers, metals (such as tool steels), ceramics (such as alumina and silica), and composites. In soft tooling, the molds produced directly or indirectly are destroyed after a single cast or are used for a small batch production. Single cast typically refers to investment casting where parts produced have properties identical to parts produced from conventional investment casting. Soft tooling for small batch production is typically used more for manufacturing of functional prototypes that meet the minimum properties required for application testing.

In hard tooling, molds produced are usually made of metals, ceramics, or composites that can be used for high volume production. For example, metal molds and silica sand molds can be produced directly with the SLM and SLS technique respectively. Parts manufactured from these molds exhibit high quality, fine finishing, and superior if not comparable to properties of parts manufactured from conventionally produced molds. Molds with high complexity are also possible. Hence, RP displays excellent tooling and manufacturing capabilities with the development of RT.

There are several benefits that are realized by RT with the most evident being cost savings. RT greatly reduces the time needed for mold-forming process and therefore increases the speed of production. This in turn reduces the time to market allowing companies to increase profits. RT also allows the ease of product customization due to its flexibility in tool design, ability to adapt to customers’ specifications, and most importantly, does not require high volume to breakeven. Conceptual designs can be further improved without incurring high costs compared to conventional manufacturing processes. These factors in RT attribute to high performance manufacturing and high quality products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • 3D Systems Cooperation (2011) [cited 2010; 5 May]. http://www.3dsystems.com/company/index.asp

  • ASTM International (2009) ASTM Standard F2792-12a. Standard terminology for additive manufacturing technologies 1, p 2 ASTM International 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States

    Google Scholar 

  • Au KM, Yu KM, Chiu WK (2011) Visibility-based conformal cooling channel generation for rapid tooling. Comput Aided Design 43(4):356–373

    Article  Google Scholar 

  • Becker D (2011) Components made from copper powder open up new opportunities. [cited 2012; 23 Oct]. http://idw-online.de/pages/de/news409097

  • Becker D, Meiners W, Wissenbach K (2011) Additive manufacturing of components out of copper and copper alloys by selective laser melting. Fraunhofer Institute for Laser Technology, Aachen

    Google Scholar 

  • Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I (2007) Ceramic components manufacturing by selective laser sintering. In: Symposium on laser synthesis and processing of advanced materials held at the E-MRS 2007 spring meeting. Elsevier Science Bv, Strasbourg

    Google Scholar 

  • Brown AS (1991) Rapid prototyping – parts without tools. Aerosp Am 29(8):18–23

    Google Scholar 

  • Campanelli SL, Contuzzi N, Ludovico AD (2010) Manufacturing of 18 Ni Marage 300 steel samples by selective laser melting. In: Hashmi MSJ, Yilbas BS, Naher S (eds) Advances in materials and processing technologies, Pts 1 and 2. Trans Tech Publications, Stafa-Zurich, pp 850–857

    Google Scholar 

  • Cheah CM, Chua CK, Ong HS (2002a) Rapid moulding using epoxy tooling resin. Int J Adv Manuf Technol 20(5):368–374

    Article  Google Scholar 

  • Cheah CM, Chua CK, Lee CW, Lim ST, Eu KH, Lin LT (2002b) Rapid sheet metal manufacturing. Part 2: direct rapid tooling. Int J Adv Manuf Technol 19(7):510–515

    Article  Google Scholar 

  • Cheah CM, Chua CK, Lee CW, Feng C, Totong K (2005) Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. Int J Adv Manuf Technol 25(3–4):308–320

    Article  Google Scholar 

  • Chhabra M, Singh R (2011) Rapid casting solutions: a review. Rapid Prototyp J 17(5):328–350

    Article  Google Scholar 

  • Chua CK (1994) 3-Dimensional rapid prototyping technologies and key development areas. Comput Control Eng J 5(4):200–206

    Article  Google Scholar 

  • Chua CK, Chew TH, Eu KH (1998) Integrating rapid prototyping and tooling with vacuum casting for connectors. Int J Adv Manuf Technol 14(9):617–623

    Article  Google Scholar 

  • Chua CK, Ho SL, Hong KH (1999a) Rapid tooling technology – part 2: case study using arc spray metal tooling. Int J Adv Manuf Technol 15(8):609–614

    Article  Google Scholar 

  • Chua CK, Ho SL, Hong KH (1999b) Rapid tooling technology – part 1: a comparative study. Int J Adv Manuf Technol 15(8):604–608

    Article  Google Scholar 

  • Chua CK, Feng C, Lee CW, Ang GQ (2005) Rapid investment casting: direct and indirect approaches via model maker II. Int J Adv Manuf Technol 25(1–2):26–32

    Article  Google Scholar 

  • Chua CK, Leong KF, Lim CS (2010) Rapid prototyping – principles and applications, vol 3. World Scientific, Singapore

    Book  Google Scholar 

  • CONCEPT Laser GmbH (2011) 16 July 2009 [cited 2009; Sept]. http://www.concept-laser.de/

  • Dang XP, Park HS (2011) Design of U-shape milled groove conformal cooling channels for plastic injection mold. Int J Prec Eng Manuf 12(1):73–84

    Article  Google Scholar 

  • Dimitrov D, Moammer A, Harms T (2010) Cooling channel configuration in injection moulds. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Direct Digital Manufacturing Laboratory – Georgia Institute of Technology (2010) [cited 2012; 15 Sept]. http://ddm.me.gatech.edu/page8/page8.html

  • Du ZH, Chua CK, Chua YS, Loh-Lee KG, Lim ST (2002) Rapid sheet metal manufacturing. Part 1: indirect rapid tooling. Int J Adv Manuf Technol 19(6):411–417

    Article  Google Scholar 

  • Garcia MA, Garcia-Pando C, Marto C (2012) Conformal cooling in moulds with special geometry. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Halloran JW, Tomeckova V, Gentry S, Das S, Cilino P, Yuan DJ, Guo R, Rudraraju A, Shao P, Wu T, Alabi TR, Baker W, Legdzina D, Wolski D, Zimbeck WR, Long D (2011) Photopolymerization of powder suspensions for shaping ceramics. J Eur Ceram Soc 31(14):2613–2619

    Article  Google Scholar 

  • Kamrani AK, Nasr EA (2010) Engineering design and rapid prototyping [Electronic resource]. Springer, Boston

    Book  Google Scholar 

  • Khan M, Dickens P (2010) Selective laser melting (SLM) of pure gold. Gold Bull 43(2):114–121

    Article  Google Scholar 

  • Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36

    Article  Google Scholar 

  • Lee CW, Chua CK, Cheah CM, Tan LH, Feng C (2004) Rapid investment casting: direct and indirect approaches via fused deposition modelling. Int J Adv Manuf Technol 23(1–2):93–101

    Google Scholar 

  • Li RD, Shi YS, Liu JH, Xie Z, Wang ZG (2010) Selective laser melting W-10 wt.% Cu composite powders. Int J Adv Manuf Technol 48(5–8):597–605

    Article  Google Scholar 

  • MTT Technologies, Rapid Manufacturing Technologies (2011) [cited 2010; Mar 2010]. http://www.mtt-group.com/

  • Mumtaz KA, Hopkinson N (2007) Laser melting functionally graded composition of waspaloy((R)) and zirconia powders. J Mater Sci 42(18):7647–7656

    Article  Google Scholar 

  • Ng CC, Savalania MM, Mana HC, Gibsonbc I (2010) Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys Prototyp 5(1):13–19

    Article  Google Scholar 

  • Pham DT, Dimov SS (2001) Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling. Springer, New York

    Book  Google Scholar 

  • Phenix Systems (2011) 18 Sep 2009 [cited 2009; 18 Sep 2009]. http://www.phenix-systems.com/phenix_en/home.htm

  • Sachs E, Cima M, Cornie J, Brancazio D, Bredt J, Curodeau A, Esterman M, Fan T, Harris C, Kremmin K, Lee SJ, Pruitt B, Williams P, Soc Mfg E (1991) 3-dimensional printing – rapid tooling and prototypes directly from CAD representation Proceedings of the 1991 NSF Design and Manufacturing Systems Conference, Jan. 1991, Austin, Texas, Society of Manufacturing Engineers, Dearborn, Michigan, pp. 569–575

    Google Scholar 

  • Sachs E, Cima M, Williams P, Brancazio D, Cornie J (1992) 3-Dimensional printing – rapid tooling and prototypes directly from a CAD model. J Eng Ind Trans Asme 114(4):481–488

    Article  Google Scholar 

  • Shea JG (1993) Virtual prototyping using knowledge-based modeling and simulation techniques. Nav Eng J 105(3):201–212

    Article  Google Scholar 

  • Shishkovsky I, Yadroitsev I, Bertrand P, Smurov I (2007) Alumina-zirconium ceramics synthesis by selective laser sintering/melting. Appl Surf Sci 254(4):966–970

    Article  Google Scholar 

  • Tang Y, Fuh JYH, Loh HT, Wong YS, Lu L (2003) Direct laser sintering of a silica sand. Mater Design 24(8):623–629

    Article  Google Scholar 

  • Wang XH, Fuh JYH, Wong YS, Tang YX (2002) Laser sintering of sand and its application in rapid tooling. In: Kuljanic E (ed) Amst 02: advanced manufacturing systems and technology, proceedings. Springer, Wien/Vienna, pp 771–778

    Chapter  Google Scholar 

  • Wang XH, Fuh JYH, Wong YS, Tang YX (2003) Laser sintering of silica sand – mechanism and application to sand casting mould. Int J Adv Manuf Technol 21(12):1015–1020

    Article  Google Scholar 

  • Wholers T (2000) Rapid prototyping and tooling state of the industry Wohlers Associates Inc. Fort Collins, Colorado

    Google Scholar 

  • Wohlers T (2003) The rapid prototyping manufacturing industry. Adv Mater Process 161(1):35–37

    Google Scholar 

  • Wohlers T (2005) New trends and developments in additive fabrication. Taylor & Francis, London

    Google Scholar 

  • Wohlers TT (2008) State of the industry. Taylor & Francis, London

    Google Scholar 

  • Zhang DQ, Cai QZ, Liu JH, Zhang L, Li RD (2010) Select laser melting of W-Ni-Fe powders: simulation and experimental study. Int J Adv Manuf Technol 51(5–8):649–658

    Article  Google Scholar 

  • Zhang DQ, Cai QZ, Liu JH, Li RD (2011) Research on process and microstructure formation of W-Ni-Fe alloy fabricated by selective laser melting. J Mater Eng Perform 20(6):1049–1054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Kai Chua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Chua, C.K., Leong, K.F., Liu, Z. (2013). Rapid Tooling in Manufacturing. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4976-7_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4976-7_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-4976-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics