Skip to main content

Neurochemistry and Molecular Neurobiology of Aggressive Behavior

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The molecular events through which social experiences shape future aggressive acts are beginning to be deciphered. The brain serotonin system is by far the major focus of neurobiological inquiries into the mechanisms mediating certain types of aggressive behavior. Its significant role in impulsive, hostile, antisocial and intensely violent outbursts has been supported by several findings including: deficient levels of 5-HT and its acid metabolite; polymorphisms in the genes coding for its metabolic enzymes; mutations in the genes for some of its receptor and transporter molecules; and altered responses to pharmacological challenges of 5-HT agonists. The reciprocal interactions of serotonin with other amines, acids, peptides and steroids provide further evidence that this indolamine mediates impulsive aggressive behavior. Afferent and efferent projections from dopamine and norepinephrine cells to serotonin cells as well as serotonergic presynaptic modulation of catecholaminergic transmission are the basis for serotonin's impact on sensory, integrative motivational and motor facets of aggressive acts. Similarly, serotonin influences the actions of oxytocin and vasopressin as well as corticotrophin releasing factor and opioid peptides in their ultimate effect on aggressive behavior. New tools are required to determine how experience-dependent phasic changes (“state”) in serotonergic terminals in prefrontal cortex, ventral striatum, central and basolateral amygdala, tegmental area and raphé nuclei are superimposed on the serotonin tone in violence-prone individuals (“trait”). Among the urgent research needs are the development of laboratory model systems that capture the transition from the species-typical patterns of dominance or territorial aggression to escalated forms of aggression, since the latter is of primary clinical relevance. The emerging neurobiological research areas focus on: the allosteric modulation of the GABAA receptor and its subunit composition as a site for the escalation of aggressive behavior; the triggering of aggressive acts by glutamate action, presumably via NMDA receptors, in the lateral hypothalamic area; the predisposing role of specific polymorphisms in enzymes and transporter molecules that are critical for the inactivation of monoamines; and the dissociation between catecholaminergic activities in anticipation of intense aggressive encounters vs. the recovery from such interactions. Important targets for intervention are the long-term neuroadaptive changes in DA, opioid peptides and glutamate in the VTA as they are engendered by repeated aggressive experiences, both in the perpetrator and in the victim of aggression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellan MT, Martin-Ruiz R, Artigas F. 2000b. Local modulation of the 5-HT release in the dorsal striatum of the rat: an in vivo microdialysis study. Eur Neuropsychopharmacol 10: 455–462.

    Article  CAS  PubMed  Google Scholar 

  • Abellan MT, Jolas T, Aghajanian GK, Artigas F. 2000a. Dual control of dorsal raphe serotonergic neurons by GABA(B) receptors. Electrophysiological and microdialysis studies. Synapse 36: 21–34.

    Article  CAS  PubMed  Google Scholar 

  • Adamec RE. 1990. Does kindling model anything clinically relevant? Biol Psychiatry 27: 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Adams DB, Boudreau W, Cowan CW, Kokonowski C, Oberteuffer K, et al 1993. Offense produced by chemical stimulation of the anterior hypothalamus of the rat. Physiol Behav 53: 1127–1132.

    Article  CAS  PubMed  Google Scholar 

  • Adell A, Artigas F. 1999. Regulation of the release of 5-hydroxytryptamine in the median raphe nucleus of the rat by catecholaminergic afferents. Eur J Neurosci 11: 2305–2311.

    Article  CAS  PubMed  Google Scholar 

  • Adell A, Celada P, Abellan MT, Artigas F. 2002. Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Rev 39: 154–180.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal HC, Fox MW, Himwich WA. 1967. Neurochemical and behavioral effects of isolation-rearing in the dog. Life Sci 6: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Aguilar MA, Minarro J, Perez-Iranzo N, Simon VM. 1994. Behavioral profile of raclopride in agonistic encounters between male mice. Pharmacol Biochem Behav 47: 753–756.

    Article  CAS  PubMed  Google Scholar 

  • Ahlenius S, Larsson K. 1998. Evidence for an involvement of 5-HT1B receptors in the inhibition of male rat ejaculatory behavior produced by 5-HTP. Psychopharmacology 137: 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Allikmets LK, Lapin IP. 1967. Influence of lesions of the amygdaloid complex on behaviour and on effects of antidepressants in rats. Int J Neuropharmacol 6: 99–108.

    Article  CAS  Google Scholar 

  • Altemus M, Cizza G, Gold PW. 1992. Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vitro. Brain Res 593: 311–313.

    Article  CAS  PubMed  Google Scholar 

  • Aman MG, Binder C, Turgay A. 2004. Risperidone effects in the presence/absence of psychostimulant medicine in children with ADHD, other disruptive behavior disorders, and subaverage IQ. J Child Adol Psychopharmacol 14: 243–254.

    Article  Google Scholar 

  • Amargos-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, et al 2004. Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14: 281–299.

    Article  PubMed  Google Scholar 

  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA. 2004. Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306: 879–881.

    Article  CAS  PubMed  Google Scholar 

  • Arnone M, Dantzer R. 1980. Effects of diazepam on extinction induced aggression in pigs. Pharmacol Biochem Behav 13: 27–30.

    Article  CAS  PubMed  Google Scholar 

  • Azmitia EC. 1999. Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology 21: 33–45.

    Article  Google Scholar 

  • Azrin NH, Hutchinson RR, Hake DF. 1966. Extinction-induced aggression. J Exp Anal Behav 9: 191–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badino P, Odore R, Osella MC, Bergamasco L, Francone P, et al 2004. Modifications of serotonergic and adrenergic receptor concentrations in the brain of aggressive Canis familiaris. Comp Biochem Physiol Mol Int Physiol 139: 343–350.

    Article  CAS  Google Scholar 

  • Ballard C, Waite J. 2006. The effectiveness of atypical antipsychotics for the treatment of aggression and psychosis in Alzheimer's disease. Cochrane Database Syst Rev.

    Google Scholar 

  • Bandler R, Depaulis A, Vergnes M. 1985. Identification of midbrain neurons mediating defensive behaviour in the rat by microinjections of excitatory amino acids. Behav Brain Res 15: 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Baraban JM, Aghajanian GK. 1980. Suppression of firing activity of 5-HT neurons in the dorsal raphe by alpha-adrenoceptor antagonists. Neuropharmacology 19: 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Barnes NM, Sharp T. 1999. A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152.

    Article  CAS  PubMed  Google Scholar 

  • Barratt ES. 1993. The use of anticonvulsants in aggression and violence. Psychopharmacol Bull 29: 75–81.

    CAS  PubMed  Google Scholar 

  • Barrett JA, Edinger H, Siegel A. 1990. Intrahypothalamic injections of norepinephrine facilitate feline affective aggression via α2-adrenoceptors. Brain Res 525: 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Barrett JA, Shaikh MB, Edinger H, Siegel A. 1987. The effects of intrahypothalamic injections of norepinephrine upon affective defense behavior in the cat. Brain Res 426: 381–384.

    Article  CAS  PubMed  Google Scholar 

  • Baxter G, Kennett G, Blaney F, Blackburn T. 1995. 5-HT2 receptor subtypes: a family re-united? Trends Pharmacol Sci 16: 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Bear DM, Fedio P. 1977. Quantitative analysis of interictal behavior in temporal lobe epilepsy. Arch Neurol 34: 454–467.

    Article  CAS  PubMed  Google Scholar 

  • Beezley DA, Gantner AB, Bailey DS,Taylor SP. 1987. Amphetamines and human physical aggression. J Res Pers 21: 52–60.

    Google Scholar 

  • Bell R, Hepper PG. 1987. Catecholamines and aggression in animals. Behav Brain Res 23: 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Bell R, Hobson H. 1993. Effects of (-)-pindolol and SDZ 216–525 on social and agonistic behavior in mice. Pharmacol Biochem Behav 46: 873–880.

    Article  CAS  PubMed  Google Scholar 

  • Belozertseva IV, Bespalov AY. 1999. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggress Behav 25: 381–396.

    Article  CAS  Google Scholar 

  • Bennett AJ, Lesch KP, Heils A, Long JC, Lorenz JG, et al 2002. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 7: 118–122.

    Article  CAS  PubMed  Google Scholar 

  • Bernard BK. 1975. Aggression and the brain monoamines: what are the answers, but of more importance, what are the questions? Aminergic hypotheses of behavior: reality or cliche? (NIDA research monograph series 3). Bernard BK, editor. Rockville, MD: National Institute on Drug Abuse; pp. 71–84.

    Google Scholar 

  • Bernstein IS. 1981. Dominance: the baby and the bathwater. Behav Brain Sci 4: 419–457.

    Article  Google Scholar 

  • Bernstein IS, Gordon TP, Rose RM. 1974. Aggression and social controls in rhesus monkey (Macaca mulatta) groups revealed in group formation studies. Fol Primatol 21: 81–107.

    Article  CAS  Google Scholar 

  • Berthold AA. 1849. Transplantation der Hoden. Archiv fuer Anatomie, Physiologie und wissenschaftliche Medicin 16: 42–46.

    Google Scholar 

  • Best M, Williams JM, Coccaro EF. 2002. Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. Proc Natl Acad Sci USA 99: 8448–8453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bester-Meredith JK, Marler CA. 2001. Vasopressin and aggression in cross-fostered California mice (Peromyscus californicus) and white-footed mice (Peromyscus leucopus). Horm Behav 40: 51–64.

    Article  CAS  PubMed  Google Scholar 

  • Bhana N, Foster RH, Olney R, Plosker GL. 2001. Olanzapine: an updated review of its use in the management of schizophrenia. Drugs 61: 111–161.

    Article  CAS  PubMed  Google Scholar 

  • Bitter I, Czobor P, Dossenbach M, Volavka J. 2005. Effectiveness of clozapine, olanzapine, quetiapine, risperidone, and haloperidol monotherapy in reducing hostile and aggressive behavior in outpatients treated for schizophrenia: a prospective naturalistic study (IC-SOHO). Eur Psychiatry 20: 403–408.

    Article  PubMed  Google Scholar 

  • Blanchard RJ, Hebert MA, Ferrari P, Palanza P, Figueira R, et al 1998. Defensive behaviors in wild and laboratory (Swiss) mice: the mouse defense test battery. Physiol Behav 65: 201–209.

    Article  CAS  PubMed  Google Scholar 

  • Blier P, Pineyro G, El Mansari M, Bergeron R, de Montigny C. 1998. Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 861: 204–216 .

    Article  CAS  PubMed  Google Scholar 

  • Bond A, Lader M. 1988. Differential effects of oxazepam and lorazepam on aggressive responding. Psychopharmacology 95: 369–373.

    Article  CAS  PubMed  Google Scholar 

  • Bond AJ, Curran HV, Bruce MS, O'Sullivan G, Shine P. 1995. Behavioural aggression in panic disorder after 8 weeks’ treatment with alprazolam. J Affect Disord 35: 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Bondar NP, Kudryavtseva NN. 2005. Repeated aggressive experience and efficacy of anxiolytics. Eur Neuropsychopharmacol 15: S142.

    Article  Google Scholar 

  • Bonson KR, Johnson RG, Fiorella D, Rabin RA, Winter JC. 1994. Serotonergic control of androgen-induced dominance. Pharmacol Biochem Behav 49: 313–322.

    Article  CAS  PubMed  Google Scholar 

  • Bouchard TJJ. 1994. Genes, environment, and personality. Science 264: 1700–1701.

    Article  PubMed  Google Scholar 

  • Bouwknecht JA, HijzenTH, van der GJ, Maes RA, Hen R, et al 2001. Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. Biol Psychiatry 49: 557–568.

    Article  CAS  PubMed  Google Scholar 

  • Brain PF. 1975. What does individual housing mean to a mouse? Life Sci 16: 187–200.

    Article  CAS  PubMed  Google Scholar 

  • Braunewell KH, Manahan-Vaughan D. 2001. Long-term depression: a cellular basis for learning? Rev Neurosci 12: 121–140.

    Article  CAS  PubMed  Google Scholar 

  • Broad KD, Hinton MR, Keverne EB, Kendrick KM. 2002a. Involvement of the medial prefrontal cortex in mediating behavioural responses to odour cues rather than olfactory recognition memory. Neuroscience 114: 715–729.

    Article  CAS  PubMed  Google Scholar 

  • Broad KD, Hinton MR, Keverne EB, Kendrick KM. 2002b. Involvement of the medial prefrontal cortex in mediating behavioural responses to odour cues rather than olfactory recognition memory. Neuroscience 114: 715–729.

    Article  CAS  PubMed  Google Scholar 

  • Brodie BB, Shore PA. 1957. A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Analgesia 66: 631–642.

    CAS  Google Scholar 

  • Brodkin ES, Goforth SA, Keene AH, Fossella JA, Silver LM. 2002. Identification of quantitative trait Loci that affect aggressive behavior in mice. J Neurosci 22: 1165–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CR. 1978. The use of benzodiazepines in prison populations. J Clin Psychiatry 38: 219–222.

    Google Scholar 

  • Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF. 1979. Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1: 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Brown GL, Ebert MH, Goyer PF, Jimerson DC, Klein WJ, et al 1982. Aggression, suicide, and serotonin-relationships to CSF amine metabolites. Am J Psychiatry 139: 741–746.

    Article  CAS  PubMed  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA. 1993. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262: 578–580.

    Article  CAS  PubMed  Google Scholar 

  • Buckley PF, Ibrahim ZY, Singer B, Orr B, Donenwirth K, et al 1997. Aggression and schizophrenia: efficacy of risperidone. J Am Acad Psychiatry Law 25: 173–181.

    CAS  PubMed  Google Scholar 

  • Buitelaar JK, van der Gaag RJ, Cohen-Kettenis P, Melman TM. 2001. A randomized controlled trial of risperidone in the treatment of aggression in hospitalized adolescents with subaverage cognitive abilities. J Clin Psychiatry 62: 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Burkhalter JE, Balster RL. 1979. The effects of phencyclidine on isolation-induced aggression in mice. Psychol Rep 45: 571–576.

    Article  CAS  PubMed  Google Scholar 

  • Burov YV. 1975. The influence of psychotropic drugs upon emotions. CNS Behav Pharmacol 3: 197–205.

    Google Scholar 

  • Cai B, Matsumoto K, Ohta H, Watanabe H. 1993. Biphasic effects of typical antidepressants and mianserin, an atypical antidepressant, on aggressive behavior in socially isolated mice. Pharmacol Biochem Behav 44: 519–525.

    Article  CAS  PubMed  Google Scholar 

  • Cairns RB, Nakelski JS. 1971. On fighting in mice: ontogenetic and experiential determinants. J Comp Physiol Psychol 74: 354–364.

    Article  CAS  PubMed  Google Scholar 

  • Calcagno E, Carli M, Invernizzi RW. 2006. The 5-HT(1A) receptor agonist 8-OH-DPAT prevents prefrontocortical glutamate and serotonin release in response to blockade of cortical NMDA receptors. J Neurochem 96: 853–860.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell EE, Miczek KA. 2005. Effects of chronic citalopram treatment on alcohol-heightened aggression in mice Program No. 76.11. 2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005. Online.

    Google Scholar 

  • Calkins SD, Johnson MC. 1998. Toddler regulation of distress to frustrating events: temperamental and maternal correlates. Infant Behav Dev 21: 379–395.

    Article  Google Scholar 

  • Cannon WB. 1929. Organization of physiological homeostasis. Physiol Rev 9: 399–431.

    Article  Google Scholar 

  • Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, et al 2001. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292: 2499–2501.

    Article  CAS  PubMed  Google Scholar 

  • Carr DB, Sesack SR. 2000. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20: 3864–3873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, et al 1995. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268: 1763–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, et al 2002. Role of genotype in the cycle of violence in maltreated children. Science 297: 851–854.

    Article  CAS  PubMed  Google Scholar 

  • Castellanos FX, Elia J, Kruesi MJP, Gulotta CS, Mefford IN, et al 1994. Cerebrospinal-fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Res 52: 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F. 2001. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21: 9917–9929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charney DS, Heninger GR, Redmond DE. 1983. Yohimbine induced anxiety and increased noradrenergic function in humans—effects of diazepam and clonidine. Life Sci 33: 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Rainnie DG, Greene RW, Tonegawa S. 1994. Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science 265: 291–294.

    Article  Google Scholar 

  • Chen JS, Kelz MB, Hope BT, Nakabeppu Y, Nestler EJ. 1997. Chronic Fos-related antigens: stable variants of delta FosB induced in brain by chronic treatments. J Neurosci 17: 4933–4941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA. 2002. Fighting fruit flies: a model system for the study of aggression. Proc Natl Acad Sci USA 99: 5664–5668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TJH, Blum K, Mathews D, Fisher L, Schnautz N, et al 2005. Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatricgenetic research of complex behavioral disorders. Med Hypoth 65: 703–707.

    Article  CAS  Google Scholar 

  • Cherek DR, Heistad GT. 1971. Fixed-interval induced aggression. Psychon Sci 25: 7–8.

    Article  Google Scholar 

  • Cherek DR, Lane SD. 1999. Effects of d,l fenfluramine on aggressive and impusive responding in adult males with a history of conduct disorder. Psychopharmacology 146: 473–481.

    Article  CAS  PubMed  Google Scholar 

  • Cherek DR, Moeller FG, Khan-Dawood F, Swann A, Lane SD. 1999. Prolactin response to buspirone was reduced in violent compared to nonviolent parolees. Psychopharmacology 142: 144–148.

    Article  CAS  PubMed  Google Scholar 

  • Cherek DR, Pietras CJ. 2003. Human aggression: biological correlates and environmental influences. Disorders of brain and mind. Ron MA, Robbins TW, editors. Cambridge: Cambridge University Press; pp. 375–399.

    Chapter  Google Scholar 

  • Cherek DR, Spiga R, Creson DL. 1995. Acute effects of eltoprazine on aggressive and point-maintained responding of normal male participants: phase I study. Exp Clin Psychopharmacol 3: 287–293.

    Article  CAS  Google Scholar 

  • Cherek DR, Spiga R, Roache JD, Cowan KA. 1991. Effects of triazolam on human aggressive, escape and point-maintained responding. Pharmacol Biochem Behav 40: 835–839.

    Article  CAS  PubMed  Google Scholar 

  • Cherek DR, Steinberg JL. 1987. Effects of drugs on human aggressive behavior. Advances in human psychopharmacology. Burrows GD, editor. Greenwich, CN: JAI Press; pp. 239–290.

    Google Scholar 

  • Cherek DR, Steinberg JL, Kelly TH, Robinson DE. 1986. Effects of d-amphetamine on human aggressive behavior. Psychopharmacology 88: 381–386.

    Article  CAS  PubMed  Google Scholar 

  • Cherek DR, Steinberg JL, Kelly TH, Robinson DE, Spiga R. 1990. Effects of acute administration of diazepam and d-amphetamine on aggressive and escape responding of normal male subjects. Psychopharmacology 100: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Chi CC, Flynn JP. 1971. Neuroanatomic projections related to biting attack elicited from hypothalamus in cats. Brain Res 35: 49–66 .

    Article  CAS  PubMed  Google Scholar 

  • Chiavegatto S, Nelson RJ. 2003. Interaction of nitric oxide and serotonin in aggressive behavior. Horm Behav 44: 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Chiavegatto S, Dawson VL, Mamounas LA, Koliatsos VE, Dawson TM, et al 2001. Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc Natl Acad Sci USA 98: 1277–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie MH, Barfield RJ. 1979. Effects of castration and home cage residency on aggressive behavior in rats. Horm Behav 13: 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Citrome L, Volavka J. 1997a. Psychopharmacology of violence: part I: assessment and acute treatment. Psychiatr Ann 27: 691–695.

    Article  Google Scholar 

  • Citrome L, Volavka J. 1997b. Psychopharmacology of violence: part II: beyond the acute episode. Psychiatr Ann 10: 696–703.

    Article  Google Scholar 

  • Cleare AJ, Bond AJ. 1995. The effect of tryptophan depletion and enhancement on subjective and behavioural aggression in normal male subjects. Psychopharmacology 118: 72–81.

    Article  CAS  PubMed  Google Scholar 

  • Clement HW, Gemsa D, Wesemann W. 1992. The effect of adrenergic drugs on serotonin metabolism in the nucleus raphe dorsalis of the rat, studied by in vivo voltammetry. Eur J Pharmacol 217: 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Clement J, Simler S, Ciesielski L, Mandel P, Cabib S, et al 1987. Age-dependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacol Biochem Behav 26: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Cooper TB, Hauger RL. 1997a. Central serotonin activity and aggression: inverse relationship with prolactin response to d-Fenfluramine, but not CSF 5-HIAA concentration, in human subjects. Am J Psychiatry 154: 1430–1435.

    Article  CAS  PubMed  Google Scholar 

  • Coccaro EF, Kavoussi RJ, Trestman RL, Gabriel SM, Cooper TB, et al 1997b. Serotonin function in human subjects: intercorrelations among central 5-HT indices and aggressiveness. Psychiatry Res 73: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Coccaro EF, Siever LJ, Klar HM, Maurer G, Cochrane K, et al 1989. Serotonergic studies in patients with affective and personality disorders. Arch Gen Psychiatry 46: 587–599.

    Article  CAS  PubMed  Google Scholar 

  • Cole HF, Wolf HH. 1970. Laboratory evaluation of aggressive behavior of the grasshopper mouse (Onychomys). J Pharm Sci 59: 969–971.

    Article  CAS  PubMed  Google Scholar 

  • Compaan JC, Koolhaas JM, Buijs RM, Pool CW, de Ruiter AJH, et al 1992. Vasopressin and the individual differentiation in aggression in male house mice. Oxytocin in maternal, sexual, and social behaviors. Pedersen CA, editor. New York: New York Academy of Sciences; pp. 458–459.

    Google Scholar 

  • Connor DF, Steingard RJ. 1996. A clinical approach to the pharmacotherapy of aggression in children and adolescents. Understanding Aggressive Behavior in Children. Ann N Y Acad Sci 794: 290–307.

    Article  CAS  PubMed  Google Scholar 

  • Connor DF, Glatt SJ, Lopez ID, Jackson D, Melloni RH. 2002. Psychopharmacology and aggression. I: a meta-analysis of stimulant effects on overt/covert aggression-related behaviors in ADHD. J Am Acad Child Adoles Psychiatry 41: 253–261.

    Article  Google Scholar 

  • Cook L, Wiedley E. 1960. Effects of a series of psychopharmacological agents on isolation induced attack behavior in mice. Fed Proceed 19: 22.

    Google Scholar 

  • Corvaja N, Doucet G, Bolam JP. 1993. Ultrastructure and synaptic targets of the raphe-nigral projection in the rat. Neuroscience 55: 417–427.

    Article  CAS  PubMed  Google Scholar 

  • Covington HE, Miczek KA. 2002. NMDA receptor antagonists block behavioral sensitization, but not enhanced cocaine self-administration after social defeat stress. Abstr Soc Neurosci 28: 897.11.

    Google Scholar 

  • Cox ED, Hagen TJ, McKernan RM, Cook JM. 1995. BZ[1] receptor subtype specific ligands. Synthesis and biological properties of betaCCt, a BZ[1] receptor subtype specific antagonist. Med Chem Res 5: 710–718.

    CAS  Google Scholar 

  • Crawley JN, Contrera JF. 1976. Intraventricular 6-hydroxydopamine lowers isolation-induced fighting behavior in male mice. Pharmacol Biochem Behav 4: 381–384.

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN, Schleidt WM, Contrera JF. 1975. Does social environment decrease propensity to fight in male mice? Behav Biol 15: 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Crews D, Moore MC. 1986. Evolution of mechanisms controlling mating behavior. Science 231: 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Crowcroft P, Rowe FP. 1963. Social organization and territorial behaviour in the wild house mouse. Proc Zool Soc London 140: 517–531.

    Article  Google Scholar 

  • Crowley TJ. 1972. Dose-dependent facilitation or supression of rat fighting by methamphetamine, phenobarbital, or imipramine. Psychopharmacologia 27: 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Cutler MG, Rodgers RJ, Jackson JE. 1997. Behavioural effects in mice of subchronic buspirone, ondansetron, and tianeptine. I. Social interactions. Pharmacol Biochem Behav 56: 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Czobor P, Volavka J, Meibach RC. 1995. Effect of risperidone on hostility in schizophrenia. J Clin Psychopharmacol 15: 243–249.

    Article  CAS  PubMed  Google Scholar 

  • D'Adamo P, Welzl H, Papadimitriou S, Raffaele dB, Tiveron C, et al 2002. Deletion of the mental retardation gene Gdi1 impairs associative memory and alters social behavior in mice. Hum Mol Genet 11: 2567–2580.

    Article  CAS  PubMed  Google Scholar 

  • Daderman AM, Lidberg L. 1999. Flunitrazepam (Rohypnol) abuse in combination with alcohol causes premeditated, grievous violence in male juvenile offenders. J Am Acad Psychiatry Law 27: 83–99.

    CAS  PubMed  Google Scholar 

  • Davis M, Whalen PJ. 2001. The amygdala: vigilance and emotion. Mol Psychiatry 6: 13–34.

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RM, Rosa MM, Santos DM, Saft DM, Benini Q, et al 2006. 5-HT(1B) receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology (Berl) 185: 441–450.

    Article  CAS  Google Scholar 

  • de Almeida RMM, Lucion A. 1994. Effects of intracerebroventricular administration of 5-HT receptor agonists on the maternal aggression of rats. Eur J Neurosci 264: 445–448.

    CAS  Google Scholar 

  • de Almeida RMM, Miczek KA. 2002. Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline—a 5-HT1B receptor agonist. Neuropsychopharmacology 27: 171–181.

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RMM, Ferrari PF, Parmigiani S, Miczek KA. 2005. Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526: 51–64.

    Article  CAS  PubMed  Google Scholar 

  • de Almeida RMM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA. 2001. Zolmitriptan-a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology (Berl) 157: 131–141.

    Article  CAS  Google Scholar 

  • de Almeida RMM, Rowlett JK, Cook JM, Yin W, Miczek KA. 2004. GABAA/alpha1 receptor agonists and antagonists: effects on species-typical and heightened aggressive behavior after alcohol self-administration in mice. Psychopharmacology (Berl) 172: 255–263.

    Article  CAS  Google Scholar 

  • de Boer SF, Koolhaas JM. 2005. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526: 125–139.

    Article  CAS  PubMed  Google Scholar 

  • de Boer SF, Lesourd M, Mocaer E, Koolhaas JM. 1999. Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via (5-hydroxytryptamine)1A receptors: a comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. J Pharmacol Exp Ther 288: 1125–1133.

    CAS  PubMed  Google Scholar 

  • de Boer SF, Lesourd M, Mocaer E, Koolhaas JM. 2000. Somatodendritic 5-HT(1A) autoreceptors mediate the anti-aggressive actions of 5-HT(1A) receptor agonists in rats: an ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 23: 20–33.

    Article  CAS  PubMed  Google Scholar 

  • de Boer TH, Nefkens F, van Helvoirt A, van Delft AM. 1996. Differences in modulation of noradrenergic and serotonergic transmission by the alpha-2 adrenoceptor antagonists, mirtazapine, mianserin and idazoxan. J Pharmacol Exp Ther. 277: 852–860.

    CAS  PubMed  Google Scholar 

  • De Bold JF, Miczek KA. 1981. Sexual dimorphism in the hormonal control of aggressive behavior of rats. Pharmacol Biochem Behav 14 Suppl 1: 89–93.

    Article  Google Scholar 

  • De Deyn PP, Rabheru K, Rasmussen A, Bocksberger JP, Dautzenberg PL, et al 1999. A randomized trial of risperidone, placebo, and haloperidol for behavioral symptoms of dementia. Neurology 53: 946–955.

    Article  CAS  PubMed  Google Scholar 

  • De Felipe C, Herrero JF, O'Brien JA, Palmer JA, Doyle CA, et al 1998. Altered nocieption, analgesia and aggression in mice lacking the receptor for substance P. Nature 392: 394–397.

    Article  CAS  PubMed  Google Scholar 

  • De Groote L, Olivier B, Westenberg HG. 2003. Role of 5-HT1B receptors in the regulation of extracellular serotonin and dopamine in the dorsal striatum of mice. Eur J Pharmacol 476: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Dekeyne A, Brocco M, Adhumeau A, Gobert A, Millan MJ. 2000. The selective serotonin (5-HT)1A receptor ligand, S15535, suppresses dialysate levels of 5-HT in teh dorsal hippocampus of freely-moving rats and displays anxiolytic properties in the social interaction and Vogel paradigms: a comparison to other anxiolytic agents. Psychopharmacology 152: 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, et al 2002. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419: 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Delfs JM, Zhu Y, Druhan JP, Aston-Jones G.S. 1998. Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat. Brain Res 806: 127–140.

    Article  CAS  PubMed  Google Scholar 

  • Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H, et al 1990. Serotonin function and the mechanism of antidepressant action—reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry 47: 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Demas GE, Kriegsfeld LJ, Blackshaw S, Huang P, Gammie SC, et al 1999. Elimination of aggressive behavior in male mice lacking endothelial nitric oxide synthase. J Neurosci 19: 1–5.

    Article  Google Scholar 

  • Denenberg VH, Gaulin-Kremer E, Gandelman R, Zarrow MX. 1973. The development of standard stimulus animals for mouse (Mus musculus) aggression testing by means of olfactory bulbectomy. Anim Behav 21: 590–598.

    Article  CAS  PubMed  Google Scholar 

  • Dietch JT, Jennings RK. 1988. Aggressive dyscontrol in patients treated with benzodiazepines. J Clin Psychiatry 49: 184–188.

    CAS  PubMed  Google Scholar 

  • Di Mascio A. 1973. The effects of benzodiazepines on aggression: reduced or increased? Psychopharmacologia 30: 95–102.

    Article  CAS  Google Scholar 

  • Di Mascio A, Shader RI, Harmatz J. 1969. Psychotropic drugs and induced hostility. Psychosomatics 10: 46–47.

    Article  Google Scholar 

  • Dodman NH, Donnelly R, Shuster L, Mertens P, Rand W, et al 1996. Use of fluoxetine to treat dominance aggression in dogs. J Am Vet Med Assoc 209: 1585–1587.

    CAS  PubMed  Google Scholar 

  • Doherty MD, Pickel VM. 2000. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864: 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Dollard J, Doob L, Miller N, Mowrer O, Sears R. 1939. Frustration and aggression. New Haven: Yale University Press.

    Book  Google Scholar 

  • Dorevitch A, Katz N, Zemishlany Z, Aizenberg D, Weizman A. 1999. Intramuscular flunitrazepam versus intramuscular haloperidol in the emergency treatment of aggressive psychotic behavior. Am J Psychiatry 156: 142–144.

    Article  CAS  PubMed  Google Scholar 

  • Doudet D, Hommer D, Higley JD, Andreason PJ, Moneman R, et al 1995. Cerebral glucose metabolism, CSF 5-HIAA levels, and aggressive behavior in rhesus monkeys. Am J Psychiatry 152: 1782–1787.

    Article  CAS  PubMed  Google Scholar 

  • Ducic I, Puia G, Vicini S, Costa E. 1993. Triazolam is more efficacious than diazepam in a broad spectrum of recombinant GABAA receptors. Eur J Pharmacol 244: 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Gross C, Stark KL, Hen R, Geyer MA. 2000. Knockout mice reveal opposite roles for serotonin 1A and 1B receptors in prepulse inhibition. Neuropsychopharmacology 22: 650–659.

    Article  CAS  PubMed  Google Scholar 

  • Duysen EG, Stribley JA, Fry DL, Hinrichs SH, Lockridge O. 2002. Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res Dev Brain Res 137: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Early CJ, Leonard BE. 1980. The effect of testosterone and cyproterone acetate on the concentration of y-aminobutyric acid in brain areas of aggressive and non-aggressive mice. Pharmacol Biochem Behav 12: 189–193.

    Article  Google Scholar 

  • Edwards DH, Kravitz EA. 1997. Serotonin, social status and aggression. Curr Opin Neurobiol 7: 812–819.

    Article  CAS  PubMed  Google Scholar 

  • Eibl-Eibesfeldt I. 1950. Beiträge zur Biologie der Haus- und der Ährenmaus nebst einigen Beobachtungen an anderen Nagern. Z Tierpsychol 7: 558–587.

    Article  Google Scholar 

  • Eibl-Eibesfeldt I. 1961. The fighting behavior of animals. Sci Am 203: 112–120.

    Article  Google Scholar 

  • Ellinwood EH Jr. 1971. Assault and homicide associated with amhetamine abuse. Am J Psychiatry 127: 90–95.

    Article  Google Scholar 

  • Elliott FA. 1977. Propanolol for the control of belligerant behavior following acute brain damage. Ann Neurol 1: 489–491.

    Article  CAS  PubMed  Google Scholar 

  • Emiliano AB, Fudge JL. 2004. From galactorrhea to osteopenia: rethinking serotonin-prolactin interactions. Neuropsychopharmacology 29: 833–846.

    Article  CAS  PubMed  Google Scholar 

  • Erskine MS, Barfield RJ, Goldman BD. 1980. Postpartum aggression in rats: II. Dependence on maternal sensitivity to young and effects of experience with pregnancy and parturition. J Comp Physiol Psychol 94: 495–505.

    CAS  Google Scholar 

  • Evrard A, Laporte AM, Chastanet M, Hen R, Hamon M, et al 1999. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice. Eur J Neurosci 11: 3823–3831.

    Article  CAS  PubMed  Google Scholar 

  • Faccidomo S, Bannai M, van Trigt RL, De Bold JF, Miczek KA. 2005. Alcohol-heightened aggression and corticolimbic 5-HT in mice: infusion and reverse microdialysis of 5-HT1B agonists into the infralimbic and orbitofrontal cortex. Abstr Soc Neurosci.

    Google Scholar 

  • Fairbanks LA, Fontenot MB, Phillips- Conroy JE, Jolly CJ, Kaplan JR, et al 1999. CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). Brain Behav Evol 53: 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Fairbanks LA, Jorgensen MJ, Huff A, Blau K, Hung YY, et al 2004. Adolescent impulsivity predicts adult dominance attainment in male. Am J Primatol 64: 1–17.

    Article  PubMed  Google Scholar 

  • Fava M, Rosenbaum JF. 1993. Psychopharmacology of pathologic aggression. Harvard Rev Psychiatry 1: 244–246.

    Article  CAS  Google Scholar 

  • Fenwick P. 1989. The nature and management of aggression in epilepsy. J Neuropsychiatry Clin Neurosci 1: 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari PF, Parmigiani S, Rodgers RJ, Palanza P. 1997. Differential effects of chlordiazepoxide on aggressive behavior in male mice: the influence of social factors. Psychopharmacology 134: 258–265.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari PF, Van Erp AMM, Tornatzky W, Miczek KA. 2003. Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 17: 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Ferris CF. 1996. Serotonin diminishes aggression by suppressing the activity of the vasopressin system. Understanding aggressive behavior in children. Ferris CF, editor. New York: The New York Academy of Sciences, New York; pp. 98–103.

    Google Scholar 

  • Ferris CF, Delville Y. 1994. Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology 19: 593–601.

    Article  CAS  PubMed  Google Scholar 

  • Ferris CF, Stolberg T, Delville Y. 1999. Serotonin regulation of aggressive behavior in male golden hamsters (Mesocricetus auratus). Behav Neurosci 113: 804–815.

    Article  CAS  PubMed  Google Scholar 

  • Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, et al 1997. Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17: 4331–4340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field EF, Pellis SM. 1994. Differential effects of amphetamine on the attack and defense components of play fighting in rats. Physiol Behav 56(2): 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Findling RL, Steiner H, Weller EB. 2005. Use of antipsychotics in children and adolescents. J Clin Psychiatry 66: 29–40.

    CAS  PubMed  Google Scholar 

  • Fischer HS, Zernig G, Schuligoi R, Miczek KA, Hauser KF, et al 2000. Alterations within the endogenous opioid system in mice with targeted deletion of the neutral endopeptidase (“enkephalinase”) gene. Regul Pept 96: 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, De Bold JF, Miczek KA. 2002. Repeated alcohol: behavioral sensitization and alcohol-heightened aggression in mice. Psychopharmacology (Berl) 160: 39–48.

    Article  CAS  Google Scholar 

  • Fish EW, De Bold JF, Miczek KA. 2005. Escalated aggression as a reward: corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology 182: 116–127.

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA. 1999. Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146: 391–399.

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, De Bold JF, Miczek KA. 2001. Alcohol, allopregnanolone and aggression in mice. Psychopharmacology 153: 473–483.

    Article  CAS  PubMed  Google Scholar 

  • Fishbein DH, Lozovsky D, Jaffe JH. 1989. Impulsivity, aggression, and neuroendocrine responses to serotonergic stimulation in substance abusers. Biol Psychiatry 25: 1049–1066.

    Article  CAS  PubMed  Google Scholar 

  • Flynn JP. 1967. The neural basis of aggression in cats. Neurophysiology and emotion. Glass DC, editor. New York: Rockefeller University Press; pp. 40–60.

    Google Scholar 

  • Fowler SC, Liou JR. 1998. Haloperidol, raclopride, and eticlopride induce microcatalepsy during operant performance in rats, but clozapine and SCH 23390 do not. Psychopharmacology 140: 81–90.

    Article  CAS  PubMed  Google Scholar 

  • Friedel RO. 2004. Dopamine dysfunction in borderline personality disorder: a hypothesis. Neuropsychopharmacology 29: 1029–1039.

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ. 2005. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492: 145–177.

    Article  PubMed  Google Scholar 

  • Gandelman R, Zarrow MX, Denenberg VH, Myers M. 1971. Olfactory bulb removal eliminates maternal behavior in the mouse. Science 171: 210–211.

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Cutler MG. 1993. Buspirone increases social envestigation in pair-housed male mice—comparison with the effects of chlordiazepoxide. Neuropharmacology 32: 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Fritschy JM, Benke D, Mohler H. 1993. Neuron-specific expression of GABAA receptor subtypes: differential association of the a1 and a3 subunits with serotonergic and GABAergic neurons. Neuroscience 54: 881–892.

    Article  CAS  PubMed  Google Scholar 

  • Garattini S, Giacalone E, Valzelli L. 1967. Isolation, aggressiveness and brain 5-hydroxytryptamine turnover. J Pharm Pharmacol 19: 338–339.

    Article  CAS  PubMed  Google Scholar 

  • Gardner DL, Lucas PB, Cowdry RW. 1990. Csf metabolites in borderline personality-disorder compared with normal controls. Biol Psychiatry 28: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Gardos G, Di Mascio A, Salzman C, Shader RI. 1968. Differential actions of chlordiazepoxide and oxazepam on hostility. Arch Gen Psychiatry 18: 757–760.

    Article  CAS  PubMed  Google Scholar 

  • Gariepy JL, Gendreau PL, Cairns RB, Lewis MH. 1998. D1 dopamine receptors and the reversal of isolation-induced behaviors in mice. Behav Brain Res 95: 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Berger B, Alvarez C, Vigny A, Henry JP. 1985. Catecholaminergic innervation of the septal area in man—immunocytochemical study using Th and Dbh antibodies. J Comp Neurol 241: 12–33.

    Article  CAS  PubMed  Google Scholar 

  • Gendreau PL, Petitto JM, Petrova A, Gariepy J, Lewis MH. 2000. D(3) and D(2) dopamine receptor agonists differentially modulate isolation-induced social-emotional reactivity in mice. Behav Brain Res 114: 107–117.

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Wilson CJ. 1996. The basal ganglia. Handbook of chemical neuroanatomy, integrated systems of the CNS, part III. Bjorklund A, Hokfelt T, Swanson LW, editors. Amsterdam: Elsevier Science; pp. 369–466.

    Google Scholar 

  • Gerra G, Zaimovic A, Avanzini P, Chittolini B, Giucastro G, et al 1997. Neurotransmitter-neuroendocrine responses to experimentally induced aggression in humans: influence of personality variable. Psychiatry Res 66: 33–43.

    Article  CAS  PubMed  Google Scholar 

  • Gervais J, Rouillard C. 2000. Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse 35: 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Giacalone E, Tansella M, Valzelli L, Garattini S. 1968. Brain serotonin metabolism in isolated aggressive mice. Biochem Pharmacol 17: 1315–1327.

    Article  CAS  PubMed  Google Scholar 

  • Gianutsos G, Lal H. 1978. Psychopharmacology of aggression (Modern problems of pharmacopsychiatry, Vol. 13). Narcotic analgesics and aggression. Valzelli L, editor. New York:S. Karger; pp. 114–138.

    Google Scholar 

  • Gibbs DM, Vale W. 1983. Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophysial portal blood. Brain Res 280: 176–179.

    Article  CAS  PubMed  Google Scholar 

  • Gobert A, Rivet JM, Audinot V, Newman-Tancredi A, Cistarelli L, et al 1998. Simultaneous quantification of serotonin, dopamine and noradrenaline levels in single frontal cortex dialysates of freely-moving rats reveals a complex pattern of reciprocal auto- and heteroreceptor-mediated control of release. Neuroscience 84: 413–429.

    Article  CAS  PubMed  Google Scholar 

  • Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, et al 1998. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci USA 95: 9991–9996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodall J. 1986. The chimpanzees of Gombe: patterns of behavior. Belknap Press of Harvard University Press. Cambridge, Massachusetts:

    Google Scholar 

  • Gorwood P, Batel P, Ades J, Hamon M, Boni C. 2000. Serotonin transporter gene polymorphisms, alcoholism, and suicidal behavior. Biol Psychiatry 48: 259–264.

    Article  CAS  PubMed  Google Scholar 

  • Gourley SL, De Bold JF, Yin W, Cook J, Miczek KA. 2005. Benzodiazepines and heightened aggressive behavior in rats: reduction by GABA(A)/alpha(1) receptor antagonists. Psychopharmacology (Berl) 178: 232–240.

    Article  CAS  Google Scholar 

  • Grace AA, Rosenkranz JA. 2002. Regulation of conditioned responses of basolateral amygdala neurons. Physiol Behav 77: 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg BD, Li Q, Lucas FR, Hu S, Sirota LA, et al 2000. Association between the serotonin transporter promoter polymorphism and personality traits in a primarily female population sample. Am J Med Genet 96: 202–216.

    Article  CAS  PubMed  Google Scholar 

  • Gregg TR, Siegel A. 2001. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression. Prog Neuropsychopharmacol Biol Psychiatry 25: 91–140.

    Article  CAS  PubMed  Google Scholar 

  • Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, et al 2001. The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5 alpha-dihydroprogesterone in psychiatric disorders. Brain Res Rev 37: 110–115.

    Article  CAS  PubMed  Google Scholar 

  • Haberstick BC, Smolen A, Hewitt JK. 2006. Family-based association test of the 5HTTLPR and aggressive behavior in a general population sample of children. Biol Psychiatry 59 (9): 836–843 .

    Article  CAS  PubMed  Google Scholar 

  • Halasz J, Liposits Z, Meelis W, Kruk MR, Haller J. 2002. Hypothalamic attack area-mediated activation of the forebrain in aggression. Neuroreport 13: 1267–1270.

    Article  PubMed  Google Scholar 

  • Haller J. 1995. Alpha-2 adrenoceptor blockade and the response to intruder aggression in Long-Evans rats. Physiol Behav 58(1): 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Kruk MR. 2003. Neuroendocrine stress responses and aggression. Neurobiology of aggression: understanding and preventing violence. Mattson MP, editor. Totowa, NJ:Humana Press; pp. 93–118.

    Chapter  Google Scholar 

  • Haller J, Kruk MR. 2006. Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci Biobehav Rev 30: 292–303.

    Article  PubMed  Google Scholar 

  • Haller J, Makara GB, Kovacs JL. 1996b. The effect of alpha-3 adrenoceptor blockers on aggressive behavior in mice: implications for the actions of adrenoceptor agents. Psychopharmacology 126: 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Makara GB, Kruk MR. 1998. Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems. Neurosci Biobehav Rev 22: 85–97.

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Makara GB, Barna I, Kovacs K, Nagy J, et al 1996a. Compression of the pituitary stalk elicits chronic increases in CSF vasopressin, oxytocin as well as in social investigation and aggressiveness. J Neuroendocrinol 8: 361–365.

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Bakos N, Rodriguiz RM, Caron MG, Wetsel WC, et al 2002. Behavioral responses to social stress in noradrenaline transporter knockout mice: effects on social behavior and depression. Brain Res Bull 58: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Hallikainen T, Saito T, Lachman HM, Volavka J, Pohjalainen T, et al 1999. Association between low activity serotonin transporter promoter genotype and early onset alcoholism with habitual impulsive violent behavior. Mol Psychiatry 4: 385–388.

    Article  CAS  PubMed  Google Scholar 

  • Halperin JM, Sharma V, Siever LJ, Schwartz ST, Matier K, et al 1994. Serotonergic function in aggressive and nonaggressive boys with attention deficit hyperactivity disorder. Am J Psychiatry 151: 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Handelsman L, Holloway K, Kahn RS, Sturiano C, Rinaldi PJ, et al 1996. Hostility is associated with a low prolactin response to meta-chlorophenylpiperazine in abstinent alcoholics. Alcohol Clin Exp Res 20: 824–829.

    Article  CAS  PubMed  Google Scholar 

  • Handelsman L, Kahn RS, Sturiano C, Rinaldi PJ, Gabriel S, et al 1998. Hostility is associated with a heightened prolactin response to meta-chlorophenylpiperazine in abstinent cocaine addicts. Psychiatry Res 80: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Haney M, De Bold JF, Miczek KA. 1989. Maternal aggression in mice and rats towards male and female conspecifics. Aggress Behav 15: 443–453.

    Article  Google Scholar 

  • Haney M, Noda K, Kream R, Miczek KA. 1990. Regional serotonin and dopamine activity: sensitivity to amphetamine and aggressive behavior in mice. Aggress Behav 16: 259–270.

    Article  CAS  Google Scholar 

  • Hasselager E, Rolinski Z, Randrup A. 1972. Specific antagonism by dopamine inhibitors of items of amphetamine induced aggressive behaviour. Psychopharmacologia 24: 485–495.

    Article  CAS  PubMed  Google Scholar 

  • Haug M, Simler S, Kim L, Mandel P. 1980. Studies on the involvement of GABA in the aggression directed by groups of intact or gonadectomized male and female mice towards lactating intruders. Pharmacol Biochem Behav 12: 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Hazell PL, Stuart JE. 2003. A randomized controlled trial of clonidine added to psychostimulant medication for hyperactive and aggressive children. J Am Acad Child Adoles Psychiatry 42: 886–894.

    Article  Google Scholar 

  • Hegstrand LR, Eichelman B. 1983. Increased shock-induced fighting with supersensitive beta-adrenergic receptors. Pharmacol Biochem Behav 19: 313–320.

    Article  CAS  PubMed  Google Scholar 

  • Heiligenberg W. 1974. Processes governing behavioral states of readiness. Adv Stud Behav 5: 173–200.

    Article  Google Scholar 

  • Heiligenstein JH, Beasley CM Jr, Potvin JH. 1993. Fluoxetine not associated with increased aggression in controlled clinical trials. Int Clin Psychopharmacol 8: 277–280.

    Article  CAS  PubMed  Google Scholar 

  • Hendley ED, Moisset B, Welch BL. 1973. Catecholamine uptake in cerebral cortex: adaptive change induced by fighting. Science 180: 1050–1052.

    Article  Google Scholar 

  • Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, et al 2003. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37: 233–247.

    Article  CAS  PubMed  Google Scholar 

  • Henley ED, Moisset B, Welch BL. 1973. Catecholamine uptake in cerebral cortex: adaptive change induced by fighting. Science 180: 1050–1052.

    Article  CAS  PubMed  Google Scholar 

  • Herve D, Pickel VM, Joh TH, Beaudet A. 1987. Serotonin axon terminals in the ventral tegmental area of the rat—fine-structure and synaptic input to dopaminergic-neurons. Brain Res 435: 71–83.

    Article  CAS  PubMed  Google Scholar 

  • Higley JD, Mehlman PT, Taub DM, Higley SB, Suomi SJ, et al 1992. Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Arch Gen Psychiatry 49: 436–441.

    Article  CAS  PubMed  Google Scholar 

  • Higley JD, King ST, Hasert MF, Champoux M, Suomi SJ, et al 1996. Stability of interindividual differences in serotonin function and its relationship to severe aggression and competent social behavior in rhesus macaque females. Neuropsychopharmacology 14: 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Hillegaart V, Ahlenius S. 1998. Facilitation and inhibition of male rat ejaculatory behaviour by the respective 5-HT1A and 5-HT1B receptor agonists 8-OH-DPAT and anpirtoline, as evidenced by use of the corresponding new and selective receptor antagonists NAD-299 and NAS-181. Brit J Pharmacol 125: 1733–1743.

    Article  CAS  Google Scholar 

  • Hjörth S, Sharp T. 1991. Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci 48: 1779–1786.

    Article  PubMed  Google Scholar 

  • Hoaken PNS, Stewart SH. 2003. Drugs of abuse and the elicitation of human aggressive behavior. Addict Behav 28: 1533–1554.

    Article  PubMed  Google Scholar 

  • Hodge GK, Butcher LL. 1975. Catecholamine correlates of isolation-induced aggression in mice. Eur J Pharmacol 31: 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Höglund E, Balm PH, Winberg S. 2000. Skin darkening, a potential social signal in subordinate arctic charr (Salvelinus alpinus): the regulatory role of brain monoamines and pro-opiomelanocortin-derived peptides. J Exp Biol 203 (Pt11): 1711–1721.

    Article  PubMed  Google Scholar 

  • Holmes A, Murphy DL, Crawley JN. 2002. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161: 160–167.

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Li Q, Murphy DL, Gold E, Crawley JN. 2003a. Abnormal anxiety-related behaviour in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2: 365–380.

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL. 2003b. Mice lacking the serotonin transporter exhibit 5-HT1A receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28: 2077–2088.

    Article  CAS  PubMed  Google Scholar 

  • Holscher C. 1997. Long-term potentiation: a good model for learning and memory? Prog Neuropsychopharmacol Biol Psychiatry 21: 47–68.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO. 1985. Characterization of the 5-HT1B recognition site in rat brain: binding studies with (-)[125I]iodocyanopindolol. Eur J Pharmacol 118: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR. 2002. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–554.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM. 1986. Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376: 85–96.

    CAS  PubMed  Google Scholar 

  • Hrabovszky E, Halasz J, Meelis W, Kruk MR, Liposits Z, et al 2005. Neurochemical characterization of hypothalamic neurons involved in attack behavior: glutamatergic dominance and co-expression of thyrotropin-releasing hormone in a subset of glutamatergic neurons. Neuroscience 133: 657–666.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, He XH, Ma CR, Liu RY, Yu S, et al 2000. Pharmacophore/receptor models for GABAA/BzR subtypes (alpha 1 beta 3 gamma 2, alpha 5 beta 3 gamma 2, and alpha 6 beta 3 gamma 2) via a comprehensive ligand-mapping approach. J Med Chem 43: 71–95.

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Smith K, Delago A, Isaksson K, Kravitz EA. 1997. Serotonin and aggressive motivation in crustaceans: Altering the decision to retreat. Proc Natl Acad Sci USA 94: 5939–5942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humble F, Berk M. 2003. Pharmacological management of aggression and violence. Hum Psychopharmacol 18: 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Huntingford FA, Turner AK. 1987. Animal conflict. Chapman and Hall. London:

    Book  Google Scholar 

  • Hurst JL. 1987. Behavioral variation in wild house mice Mus domesticus Rutty: a quantitative assessment of female social organization. Anim Behav 35: 1846–1857.

    Article  Google Scholar 

  • Itil TM, Wadud A. 1975. Treatment of human aggression with major tranquilizers, antidepressants and newer psychotropic drugs. J Nerv Ment Dis 160: 83–99.

    Article  CAS  PubMed  Google Scholar 

  • Janssen PAJ, Jageneau AH, Niemegeers JE. 1960. Effects of various drugs on isolation-induced fighting behavior of male mice. J Pharmacol Exp Ther 129: 471–475.

    PubMed  Google Scholar 

  • Jenck F, Broekkamp CLE, Van Delft AML. 1989. Effects of serotonin receptor antagonists on PAG stimulation induced aversion: different contributions of 5HT1, 5HT2 and 5HT3 receptors. Psychopharmacology 97: 489–495.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DE, Rollema H, Schmidt AW, McHarg AD. 2001. Serotonergic effects and extracellular brain levels of eletriptan, zolmitriptan and sumatriptan in rat brain. Eur J Pharmacol 425: 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen H, Riis M, Knigge U, Kjaer A, Warberg J. 2003. Serotonin receptors involved in vasopressin and oxytocin secretion. J Neuroendocrinol 15: 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Kalynchuk LE, Dalal S, Mana MJ, Pinel JP. 1992. Nifedipine blocks the development of tolerance to the anticonvulsant effects of ethanol. Ann N Y Acad Sci 654: 459–460.

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Miczek KA. 1988. Social, motor, and autonomic signs of morphine withdrawal: differential sensitivities to catecholaminergic drugs in mice. Psychopharmacology 96: 468–476.

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Hegstrand LR, Eichelman B. 1980. Dietary tryptophan modulation and aggressive behavior in mice. Pharmacol Biochem Behav 12: 675–679.

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Hegstrand LR, Eichelman B. 1981. Dietary tryptophan reversal of septal lesion and 5,7-DHT lesion elicited shock-induced fighting. Pharmacol Biochem Behav 15: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JR, Manuck SB, Fontenot MB, Mann JJ. 2002. Central nervous system monoamine correlates of social dominance in cynomolgus monkeys (Macaca fascicularis). Neuropsychopharmacology 26: 431–443.

    Article  CAS  PubMed  Google Scholar 

  • Karl T, Lin S, Schwarzer C, Sainsbury A, Couzens M, et al 2004. Y1 receptors regulate aggressive behavior by modulating serotonin pathways. Proc Natl Acad Sci USA 101: 12742–12747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keck PE Jr, Strakowski SM, McElroy SL. 2000. The efficacy of atypical antipsychotics in the treatment of depressive symptoms, hostility, and suicidality in patients with schizophrenia. J Clin Psychiatry 61 Suppl 3: 4–9.

    Google Scholar 

  • Kemble ED, Behrens M, Rawleigh JM, Gibson BM. 1991. Effects of yohimbine on isolation-induced aggression, social attraction, and conspecific odor preference in mice. Pharmacol Biochem Behav 40: 781–785.

    Article  CAS  PubMed  Google Scholar 

  • Kemp JA, McKernan RM. 2002. NMDA receptor pathways as drug targets. Nat Neurosci 5: 1039–1042.

    Article  CAS  PubMed  Google Scholar 

  • Kendrick KM, Da Costa APC, Broad KD, Ohkura S, Guevara R, et al 1997. Neural control of maternal behaviour and olfactory recognition of offspring. Brain Res Bull 44: 383–395.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JS, Bymaster FP, Schuh L, Calligaro DO, Nomikos G, et al 2001. A current review of olanzapine's safety in the geriatric patient: from pre-clinical pharmacology to clinical data. Int J Geriatr Psychiatry 16: S33–S61.

    Article  PubMed  Google Scholar 

  • Kew JNC, Kemp JA. 2005. Ionotropic and metabotropic glutamate receptor structure and pharmacology (vol 179, pg 4, 2005). Psychopharmacology (Berl) 182: 320 .

    Article  CAS  Google Scholar 

  • Kim DH, Jung JS, Yan JJ, Suh HW, Son BK, et al 2000. Increased plasma corticosterone, aggressiveness and brain monoamine changes induced by central injection of pertussis toxin. Eur J Pharmacol 409: 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Tolliver TJ, Huang SJ, Martin BJ, Andrews AM, et al 2005. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49: 798–810.

    Article  CAS  PubMed  Google Scholar 

  • Knobelman DA, Kung HF, Lucki I. 2000a. Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT(1A) and 5-HT(1B) receptors. J Pharmacol Exp Ther 292: 1111–1117.

    CAS  PubMed  Google Scholar 

  • Knobelman DA, Kung HF, Lucki I. 2000b. Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT(1A) and 5-HT(1B) receptors. J Pharmacol Exp Ther 292: 1111–1117.

    CAS  PubMed  Google Scholar 

  • Knutson B, Wolkowitz OM, Cole SW, Chan T, Moore EA, et al 1998. Selective alteration of personality and social behavior by serotonergic intervention. Am J Psychiatry 155: 373–379.

    Article  CAS  PubMed  Google Scholar 

  • Koe BK, Nielsen JA, Macor JE, Heym J. 1992. Biochemical and behavioral studies of the 5-HT1B receptor agonist, CP-94, 253. Drug Dev Res 26: 241–250.

    Article  CAS  Google Scholar 

  • Kollack-Walker S, Watson SJ, Akil H. 1997. Social stress in hamsters: defeat activates specific neurocircuits within the brain. J Neurosci 17: 8842–8855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, et al 1996. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383: 535–538.

    Article  CAS  PubMed  Google Scholar 

  • Koolhaas JM, Korte SM, de Boer SF, Van Der Vegt BJ, Van Reenen CG, et al 1999. Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23: 925–935.

    Article  CAS  PubMed  Google Scholar 

  • Korte SM, Meijer OC, De Kloet ER, Buwalda B, Keijser J, et al 1996. Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Res 736: 338–343.

    Article  CAS  PubMed  Google Scholar 

  • Kotler M, Barak P, Cohen H, Averbuch IE, Grinshpoon A, et al 1999. Homicidal behavior in schizophrenia associated with a genetic polymorphism determining low catechol O-methyltransferase (COMT) activity. Am J Med Genet 88: 628–633.

    Article  CAS  PubMed  Google Scholar 

  • Kratochvil CJ, Findling RL, McDougle CJ, Scahill L, Hamarman S. 2005. Pharmacological management of agitation and aggression in an adolescent with autism. J Am Acad Child Adoles Psychiatry 44: 829–832.

    Article  Google Scholar 

  • Kravitz EA. 1988. Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science 241: 1775–1781.

    Article  CAS  PubMed  Google Scholar 

  • Kravitz EA, Huber R. 2003. Aggression in invertebrates. Curr Opin Neurobio 13: 736–743.

    Article  CAS  Google Scholar 

  • Kreiss DS, Lucki I. 1994. Differential regulation of serotonin (5-HT) release in the striatum and hippocampus by 5-HT1A autoreceptors of the dorsal and median raphe nuclei. J Pharmacol Exp Ther 269: 1268–1279.

    CAS  PubMed  Google Scholar 

  • Krsiak M. 1974. Behavioral changes and aggressivity evoked by drugs in mice. Res Commun Chem Pathol Pharmacol 7: 237–257.

    CAS  PubMed  Google Scholar 

  • Krsiak M. 1979. Effects of drugs on behaviour of aggressive mice. Brit J Pharmacol 65: 525–533.

    Article  CAS  Google Scholar 

  • Krsiak M, Sulcova A, Tomasikova Z, Dlohozkova N, Kosar E, et al 1981. Drug effects on attack, defense and escape in mice. Pharmacol Biochem Behav 14: 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Kruesi MJP, Rapoport JL, Hamburger S, Hibbs E, Potter WZ, et al 1990. Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch Gen Psychiatry 47: 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva NN. 1991. A sensory contact model for the study of aggressive and submissive behavior in male mice. Aggress Behav 17: 285–291.

    Article  Google Scholar 

  • Kuikka JT, Tiihonen J, Bergstrom KA, Karhu J, Rasanen P, 1998. Abnormal structure of human striatal dopamine re-uptake sites in habitually violent alcoholic offenders: a fractal analysis. 253: 195–197.

    Google Scholar 

  • Lachman HM, Papolos DF. 1998. Chromosome 22q11 deletions and aggressive behaviour. Brit J Psychiatry 172: 540.

    Article  CAS  Google Scholar 

  • Lagerspetz K. 1964. Studies on the aggressive behaviour of mice. Ann Acad Sci Fenn 131: 1–131.

    Google Scholar 

  • Lambe EK, Goldman- Rakic PS, Aghajanian GK. 2000. Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. Cereb Cortex 10: 974–980.

    Article  CAS  PubMed  Google Scholar 

  • Lang A, Harro J, Soosaar A, Koks S, Volke V, et al 1995. Role of N-methyl-d-aspartic acid and cholecystokinin receptors in apomorphine-induced aggressive behaviour in rats. Naunyn Schmiedebergs Arch Pharmacol 351: 363–370.

    Article  CAS  PubMed  Google Scholar 

  • Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, et al 1998. Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 55: 989–994.

    Article  CAS  PubMed  Google Scholar 

  • Larsson K. 1975. Sexual impairment of inexperienced male rats following pre- and postpuberal olfactory bulbectomy. Physiol Behav 14: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Lasley SM, Thurmond JB. 1985. Interaction of dietary tryptophan and social isolation on territorial aggression, motor activity, and neurochemistry in mice. Psychopharmacology 87: 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Lauder JM. 1993. Neurotransmitters as growth regulatory signals—role of receptors and 2nd messengers. Trends Neurosci 16: 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc JC, Binder CE, Armenteros JL, Aman MG, Wang JS, et al 2005. Risperidone reduces aggression in boys with a disruptive behaviour disorder and below average intelligence quotient: analysis of two placebo-controlled randomized trials. Int Clin Psychopharmacol 20: 275–283.

    Article  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, et al 1997. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A(2a) receptor. Nature 388: 674–678.

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Simansky K. 1997. CP-94,253: a selective serotonin 5-HT1B agonist that promotes satiety. Psychopharmacology 131: 264–270.

    Article  CAS  PubMed  Google Scholar 

  • Le Greves P, Huang W, Johansson P, Thornwall M, Zhou Q, et al 1997. Effects of an anabolic-androgenic steroid on the regulation of the NMDA receptor NR1, NR2A and NR2B subunit mRNAs in brain regions of the male rat. Neurosci Lett 226: 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Lesch KP. 2005. Alcohol dependence and gene × environment interaction in emotion regulation: is serotonin the link? Eur J Pharmacol 526: 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Lesch KP, Mossner R. 1998. Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders? Biol Psychiatry 44: 179–192.

    Article  CAS  PubMed  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, et al 1996. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 264: 1537–1551.

    Google Scholar 

  • Liljequist S, Engel J. 1982. Effects of GABAergic agonists and antagonists on various ethanol-induced behavioral changes. Psychopharmacology 78: 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Lindenmayer JP, Kotsaftis A. 2000. Use of sodium valproate in violent and aggressive behaviors: a critical review. J Clin Psychiatry 61: 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Linner L, Wiker C, Arborelius L, Schalling M, Svensson TH. 2004. Selective noradrenaline reuptake inhibition enhances serotonergic neuronal activity and transmitter release in the rat forebrain. J Neural Transm 111: 127–139.

    Article  CAS  PubMed  Google Scholar 

  • Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, et al 1983. Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33: 2609–2614.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone MS, Harris-Warrick RM, Kravitz EA. 1980. Serotonin and octopamine produce opposite postures in lobsters. Science 208: 76–79.

    Article  CAS  PubMed  Google Scholar 

  • Loconto J, Papes F, Chang E, Stowers L, Jones EP, et al 2003. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112: 607–618.

    Article  CAS  PubMed  Google Scholar 

  • Lonstein JS, Gammie SC. 2002. Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26: 869–888.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz K. 1966. On aggression. London: Methuen.

    Google Scholar 

  • Low K, Crestani F, Keist R, Benke D, Brunig I, et al 2000. Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290: 131–134.

    Article  CAS  PubMed  Google Scholar 

  • Lucki I, Wieland S. 1990. 5-Hydroxytryptamine-1A receptors and behavioral responses. Neuropsychopharmacology 3: 481–493.

    CAS  PubMed  Google Scholar 

  • Lumley LA, Robison CL, Slusher BS, Wozniak K, Dawood M, et al 2004. Reduced isolation-induced aggressiveness in mice following NAALADase inhibition. Psychopharmacology (Berl) 171: 375–381.

    Article  CAS  Google Scholar 

  • Mackintosh JH. 1970. Territory formation by laboratory mice. Anim Behav 18: 177–183.

    Article  Google Scholar 

  • Macor JE, Burkhart CA, Heym JH, Ives JL, Lebel LA, et al 1990. 3-(1,2,5,6-Tetrahydropyrid-4-Yl)pyrrolo[3,2-B]pyrid-5-one—a potent and selective serotonin (5-Ht1B) agonist and rotationally restricted phenolic analog of 5-methoxy-3-(1,2,5,6-tetrahydropyrid-4-Yl)indole. J Med Chem 33: 2087–2093.

    Article  CAS  PubMed  Google Scholar 

  • Mandel P, Mack G, Kempf E. 1979. Molecular basis of some models of aggressive behavior. Psychopharmacology of aggression. Sandler M, editor. New York: Raven Press; pp. 95–110.

    Google Scholar 

  • Mandel P, Ciesielski L, Maitre M, Simler S, Kempf E, et al 1981. Inhibitory amino acids, aggressiveness, and convulsions. FV, Amino acid neurotransmitters. De Feudis editor. New York: Raven Press; pp. 1–9.

    Google Scholar 

  • Mandiyan VS, Coats JK, Shah NM. 2005. Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8: 1660–1662.

    Article  CAS  PubMed  Google Scholar 

  • Mann MA, Svare B. 1982. Factors influencing pregnancy-induced aggression in mice. Behav Neural Biol 36: 242–258.

    Article  CAS  PubMed  Google Scholar 

  • Manuck SB, Kaplan JR, Rymeski BA, Fairbanks LA, Wilson ME. 2003. Approach to a social stranger is associated with low central nervous system serotonergic responsivity in female cynomolgus monkeys (Macaca fascicularis). Am J Primatol 61: 187–194.

    Article  CAS  PubMed  Google Scholar 

  • Manuck SB, Flory JD, McCaffery JM, Matthews KA, Mann JJ, et al 1998. Aggression, impulsivity, and central nervous system serotonergic responsivity in a nonpatient sample. Neuropsychopharmacology 19: 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Marek GJ, Aghajanian GK. 1998. 5-Hydroxytryptamine-induced excitatory postsynaptic currents in neocortical layer V pyramidal cells: suppression by mu-opiate receptor activation. Neuroscience 86: 485–497.

    Article  CAS  PubMed  Google Scholar 

  • Marino MD, Bourdelat-Parks BN, Liles LC, Weinshenker D. 2005. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161: 197–203.

    Article  CAS  PubMed  Google Scholar 

  • Marsh L, Krauss GL. 2000. Aggression and violence in patients with epilepsy. Epilepsy Behav 1: 160–168.

    Article  CAS  PubMed  Google Scholar 

  • Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O. 2002. Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 159: 379–387.

    Article  CAS  Google Scholar 

  • Martin-Lopez M, Navarro JF. 2002. Antiaggressive effects of zolpidem and zopiclone in agonistic encounters between male mice. Aggress Behav 28: 416–425.

    Article  CAS  Google Scholar 

  • Matsumoto K, Cai B, Satoh T, Ohta H, Watanabe H. 1991. Desipramine enhances isolation-induced aggression behavior in mice. Pharmacol Biochem Behav 39: 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Honda S, Harada N. 2003. Neurological effects of aromatase deficiency in the mouse. J Steroid Biochem Mol Biol 86: 357–365.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, et al 2005. Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci USA 102: 16066–16071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAllister KH. 1990. Ethological analysis of the effects of MK-801 upon aggressive male mice: similarity to chlordiazepoxide. Pharmacol Biochem Behav 37: 101–106.

    Article  CAS  PubMed  Google Scholar 

  • McCracken JT, McGough J, Shah B, Cronin P, Hong D, et al 2002. Risperidone in children with autism and serious behavioral problems. New Eng J Med 347: 314–321.

    Article  CAS  PubMed  Google Scholar 

  • McFarland K, Davidge SB, Lapish CC, Kalivas PW. 2004. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24: 1551–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis MY. 2004. Anabolic androgenic steroids and aggression—studies using animal models. Youth Violence: Scientific Approaches to Prevention. Ann N Y Acad Sci 1036: 399–415.

    CAS  Google Scholar 

  • McKenzie-Quirk SD, Girasa KA, Allan AM, Miczek KA. 2005. 5-HT3 receptors, alcohol and aggressive behavior in mice. Behav Pharmacol 16: 163–170.

    Article  CAS  PubMed  Google Scholar 

  • McMillen BA, Da Vanzo EA, Song AH, Scott SM, Rodriguez ME. 1989. Effects of classical and atypical antipsychotic drugs on isolation-induced aggression in male mice. Eur J Pharmacol 160: 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Mehlman PT, Higley JD, Faucher I, Lilly AA, Taub DM, et al 1994. Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am J Psychiatry 151: 1485–1491.

    Article  CAS  PubMed  Google Scholar 

  • Mehta AK, Ticku MK. 1999. An update on GABAA receptors. Brain Res Rev 29: 196–217.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA. 1974. Intraspecies aggression in rats: effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia 39: 275–301.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA. 2001. Research on animal aggression: emerging successes for understanding determinants of human violence. Animal research and human health:advancing human welfare through behavioral science. Carrol ME, Overmier JB, editors. Washington, D.C: American Psychological Association.

    Google Scholar 

  • Miczek KA, Donat P. 1989. Brain 5-HT systems and inhibition of aggressive behavior. P, Behavioural pharmacology of 5-HT. Bevan Cools AR, Archer T, editors. Hillsdale, NJ: Lawrence Erlbaum Associates; pp. 117–144.

    Google Scholar 

  • Miczek KA, Haney M. 1994. Psychomotor stimulant effects of d-amphetamine, MDMA and PCP: Aggressive and schedule-controlled behavior in mice. Psychopharmacology 115: 358–365.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, O'Donnell JM. 1978. Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology 57: 47–55.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, O'Donnell JM. 1980a. Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 69: 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, O'Donnell JM. 1980b. Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 69: 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Yoshimura H. 1982. Disruption of primate social behavior by d-amphetamine and cocaine: differential antagonism by antipsychotics. Psychopharmacology 76: 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Fish EW, De Bold JF. 2003. Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm Behav 44: 242–257.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Hussain S, Faccidomo S. 1998b. Alcohol-heightened aggression in mice: attenuation by 5-HT1A receptor agonists. Psychopharmacology 139: 160–168.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Barros HM, Sakoda L, Weerts EM. 1998a. Alcohol and heightened aggression in individual mice. Alcohol Clin Exp Res 22: 1698–1705.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Fish EW, De Bold JF, de Almeida RMM. 2002. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163: 434–458.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S. 2001. Aggressive behavioral phenotypes in mice. Behav Brain Res 125: 167–181.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Weerts EM, Haney M, Tidey J. 1994b. Neurobiological mechanisms controlling aggression: preclinical developments for pharmacotherapeutic interventions. Neurosci Biobehav Rev 18: 97–110.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Fish EW, de Almeida RMM, Faccidomo S, DeBold JF. 2004b. Role of alcohol consumption in escalation to violence. Ann N Y Acad Sci 1036: 278–289.

    Article  PubMed  Google Scholar 

  • Miczek KA, Haney M, Tidey J, Vivian J, Weerts E. 1994a. Neurochemistry and pharmacotherapeutic management of violence and aggression. Understanding and preventing violence: biobehavioral influences on violence. Reiss AJ, Miczek KA, Roth JA, editors. Washington, DC: National Academy Press; pp. 244–514.

    Google Scholar 

  • Miczek KA, Mutschler NH, Van Erp AMM, Blank AD, McInerney SC. 1999. d-Amphetamine “cue” generalizes to social defeat stress: sensitization and role of accumbens dopamine. Psychopharmacology 147: 190–199.

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Faccidomo S, de Almeida RMM, Bannai M, Fish EW, et al 2004a. Escalated aggressive behavior: new pharmacotherapeutic approaches and opportunities. Ann N Y Acad Sci 1036: 336–355.

    Article  CAS  PubMed  Google Scholar 

  • Minkeviciene R, Banerjee P, Tanila H. 2004. Memantine improves spatial learning in a transgenic mouse model of Alzheimer's disease. J Pharmacol Exp Ther 311: 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Mirkes SJ, Bethea CL. 2001. Oestrogen, progesterone and serotonin converge on GABAergic neurones in the monkey hypothalamus. J Neuroendocrinol 13: 182–192.

    CAS  PubMed  Google Scholar 

  • Mirsky AF, Harman N. 1974. On aggressive behavior and brain disease-some questions and possible relationships derived from the study of men and monkeys. The neuropsychology of aggression. Whalen RF, editor. New York:Plenum Press; pp. 185–210.

    Chapter  Google Scholar 

  • Mitchell PJ. 2005. Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol 526: 147–162.

    Article  CAS  PubMed  Google Scholar 

  • Moeller FG, Dougherty DM, Swann AC, Collins D, Davis CM, et al 1996. Tryptophan depletion and aggressive responding in healthy males. Psychopharmacology 126: 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Mohler H, Benke D, Benson J, Luscher B, Fritschy JM. 1995. GABA(A)-receptor subtypes in vivo: cellular localization, pharmacology and regulation. GABA(A) receptors and anxiety. Biggio G, editor. 227 East Washington Sq Philadelphia PA 19106: Raven Press; pp. 41–56.

    Google Scholar 

  • Molina V, Ciesielsski L, Gobaille S, Mandel P. 1986. Effects of the potentiation of the GABAergic neurotransmission in the olfactory bulbs on mouse-killing behavior. Pharmacol Biochem Behav 24: 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Moller SE, Mortensen EL, Breum L, Alling C, Larsen OG, et al 1996. Aggression and personality: association with amino acids and monoamine metabolites. Psychol Med 26: 323–331.

    Article  CAS  PubMed  Google Scholar 

  • Monroe RR. 1978. Brain dysfunction in aggressive criminals. DC Heath and Company. Lexington:

    Google Scholar 

  • Morgan C, Cone RD. 2006. Melanocortin-5 receptor deficiency in mice blocks a novel pathway influencing pheromone-induced aggression. Behav Genet: 1–10.

    Google Scholar 

  • Mos J, Olivier B. 1989. Quantitative and comparative analyses of pro-aggressive actions of benzodiazepines in maternal aggression of rats. Psychopharmacology 97: 152–153.

    Article  CAS  PubMed  Google Scholar 

  • Mos J, Van Valkenburg CFM. 1979. Specific effect on social stress and aggression on regional dopamine metabolism in rat brain. Neurosci Lett 15: 325–327.

    Article  CAS  PubMed  Google Scholar 

  • Mos J, Olivier B, Poth M, Aken H. 1992. The effects of intraventricular administration of eltoprazine, 1-(3-trifluoromethylphenyl) piperazine hydrochloride and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 212: 295–298.

    Article  CAS  PubMed  Google Scholar 

  • Moss HB, Yao JK, Panzak GL. 1990. Serotonergic responsivity and behavioral dimensions in antisocial personality disorder with substance abuse. Biol Psychiatry 28: 325–338.

    Article  CAS  PubMed  Google Scholar 

  • Muehlenkamp F, Lucion A, Vogel WH. 1995. Effects of selective serotenergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50: 671–674.

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Blanco J, Porras CA. 1987. Changes in neurotransmitter amino acids content in several CNS areas from aggressive and non-aggressive bull strains. Physiol Behav 39: 453–457.

    Article  CAS  PubMed  Google Scholar 

  • Musty RE, Consroe PF. 1982. Phencyclidine produces aggressive behavior in rapid eye movement sleep-deprived rats. Life Sci 30: 1733–1738.

    Article  CAS  PubMed  Google Scholar 

  • National Drug Intelligence Center. 2005. National Drug Threat Assessment.

    Google Scholar 

  • Nelson RJ, Demas GE, Huang PL, Fishman MC, Dawson VL, et al 1995. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378: 383–386.

    Article  CAS  PubMed  Google Scholar 

  • New AS, Trestman RL, Mitropoulou V, Benishay DS, Coccaro E, et al 1997. Serotonergic function and self-injurious behavior in personality disorder patients. Psychiatry Res 69: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • New AS, Gelernter J, Goodman M, Mitropoulou V, Koenigsberg H, et al 2001. Suicide, impulsive aggression, and HTR1B genotype. Biol Psychiatry 50: 62–65.

    Article  CAS  PubMed  Google Scholar 

  • New AS, Buchsbaum MS, Hazlett EA, Goodman M, Koenigsberg HW, et al 2004. Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology 176: 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Nicot A, Otto T, Brabet P, Dicicco-Bloom EM. 2004. Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. J Neurosci 24: 8786–8795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishida T, Haraiwa-Hasegawa M, Takahata Y. 1985. Group extinction and female transfer in wild chimpanzees in the Mahale National Park, Tanzania. Zeitschrift für Tierpsychologie 67: 284–301.

    Article  Google Scholar 

  • Nocjar C, Roth BL, Pehek EA. 2002. Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111: 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Nock MK, Kazdin AE. 2002. Parent-directed physical aggression by clinic-referred youths. J Clin Child Adolesc Psychol 31: 193–205.

    Article  PubMed  Google Scholar 

  • Nogueira RL, Graeff FG. 1995. Role of 5HT receptor subtypes in the modulation of dorsal periaqueductal gray generated aversion. Pharmacol Biochem Behav 52: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Noirot E, Goyens J, Buhot MC. 1975. Aggressive behavior of pregnant mice towards males. Horm Behav 6: 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Nolan KA, Volavka J, Czobor P, Sheitman B, Lindenmayer JP, et al 2005. Aggression and psychopathology in treatment-resistant inpatients with schizophrenia and schizoaffective disorder. J Psychiatr Res 39: 109–115.

    Article  PubMed  Google Scholar 

  • Ogawa S, Chan J, Chester AE, Gustafsson JA, Korach KS, et al 1999. Survival of reproductive behaviors in estrogen receptor beta gene-deficient (beta ERKO) male and female mice. Proc Natl Acad Sci USA 96: 12887–12892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S,Washburn TF, Taylor J, Lubahn DB, Korach KS, et al 1998. Modifications of testosterone-dependent behaviors by estrogen receptor-à gene disruption in male mice. Endocrinology 139: 5058–5069.

    Article  CAS  PubMed  Google Scholar 

  • O'Keane V, Moloney E, O'Neill H, O'Connor A, Smith C, et al 1992. Blunted prolactin responses to d-fenfluramine in sociopathy—evidence for subsensitivity of central serotonergic function. Brit J Psychiatry 160: 643–646.

    Article  CAS  Google Scholar 

  • Oliveira-dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, et al 2000. Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc Natl Acad Sci USA 97: 12272–12277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier B. 2004. Serotonin and aggression. Ann N Y Acad Sci 1036: 382–392.

    Article  CAS  PubMed  Google Scholar 

  • Olivier B, Mos J. 1986. Serenics and aggression. Stress Med 2: 197–209.

    Article  Google Scholar 

  • Olivier B, Mos J. 1992. Rodent models of aggressive behavior and serotonergic drugs. Prog Neuropsychopharmacol Biol Psychiatry 16: 847–870.

    Article  CAS  PubMed  Google Scholar 

  • Olivier B, van Dalen D. 1982. Social behaviour in rats and mice: an ethologically based model for differentiating psychoactive drugs. Aggress Behav 8: 163–168.

    Article  CAS  Google Scholar 

  • Olivier B, Van Oorschot R. 2005. 5-HT1B receptors and aggression: a review. Eur J Pharmacol 526: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Olivier B, Mos J, Miczek KA. 1991. Ethopharmacological studies of anxiolytics and aggression. Eur Neuropsychopharmacol 1: 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Olivier B, Mos J, Rasmussen D. 1990. Behavioural pharmacology of the serenic, eltoprazine. Rev Drug Metab Drug Interact 8: 31–83.

    CAS  Google Scholar 

  • Olivier B, Mos J, Van der Heyden J, Hartog J. 1989. Serotonergic modulation of social interactions in isolated male mice. Psychopharmacology 97: 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Olivier B, Mos J, Van Oorschot R, Hen R. 1995. Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28: 80–90.

    Article  PubMed  Google Scholar 

  • Pabis DJ, Stanislav SW. 1996. Pharmacotherapy of aggressive behavior. Ann Pharmacother 30: 278–287.

    Article  CAS  PubMed  Google Scholar 

  • Palanza P, Della Seta D, Ferrari PF, Parmigiani S. 2005. Female competition in wild house mice depends upon timing of female/male settlement and kinship between females. Anim Behav 69: 1259–1271.

    Article  Google Scholar 

  • Pare D, Quirk GJ, Le Doux JE. 2004. New vistas on amygdala networks in conditioned fear. J Neurophysiol 92: 1–9.

    Article  PubMed  Google Scholar 

  • Parent A, Poitras D, Dube L. 1984. Comparative anatomy of central monoaminergic systems. Handbook of chemical neuroanatomy. Bjorklund A, editor. Vol. 2 classical transmitters in the CNS. Part I. Elsevier Science Publishers B.V., Amsterdam, pp. 409–439.

    Google Scholar 

  • Parker RN, Auerhahn K. 1998. Alcohol, drugs, and violence. Ann Rev Sociol 24: 291–311.

    Article  Google Scholar 

  • Parmigiani S, Palanza P, Rogers J, Ferrari PF. 1999. Selection, evolution of behavior and animal models in behavioral neuroscience. Neurosci Biobehav Rev 23: 957–969.

    Article  CAS  PubMed  Google Scholar 

  • Parsian A, Cloninger CR. 2001. Serotonergic pathway genes and subtypes of alcoholism: association studies. Psychiatric Genetics 11: 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Parsons LH, Weiss F, Koob GF. 1998. Serotonin(1B) receptor stimulation enhances cocaine reinforcement. J Neurosci 18: 10078–10089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NC, Crismon ML, Hoagwood K, Jensen PS. 2005. Unanswered questions regarding atypical antipsychotic use in aggressive children and adolescents. J Child Adol Psychopharmacol 15: 270–284.

    Article  Google Scholar 

  • Pehek EA, McFarlane HG, Maguschak K, Price B, Pluto CP. 2001. M100,907, a selective 5-HT2A antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Pellis SM, Pellis VC. 1987. Play-fighting differs from serious fighting in both target of attack and tactics of fighting in the laboratory rat Rattus norvegicus. Aggress Behav 13: 227–242.

    Article  Google Scholar 

  • Pietras CJ, Lieving LM, Cherek DR, Lane SD, Tcheremissine OV, et al 2005. Acute effects of lorazepam on laboratory measures of aggressive and escape responses of adult male parolees. Behav Pharmacol 16: 243–251.

    Article  CAS  PubMed  Google Scholar 

  • Pihl RO, Young SN, Harden P, Plotnick S, Chamberlain B, 1995. Acute effect of altered tryptophan levels and alcohol on aggression in normal human males. Psychopharmacology 119: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Pine DS, Coplan JD, Wasserman GA, Miller LS, Fried JE, et al 1997. Neuroendocrine response to fenfluramine challenge in boys—associations with aggressive behavior and adverse rearing. Arch Gen Psychiatry 54: 839–846.

    Article  CAS  PubMed  Google Scholar 

  • Pinel JPJ, Treit D, Rovner LI. 1977. Temporal lobe aggression in rats. Science 197: 1088–1089.

    Article  CAS  PubMed  Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A. 2003. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci USA 100: 2035–2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placidi GPA, Oquendo MA, Malone KM, Huang YY, Ellis SP, et al 2001. Aggressivity, suicide attempts, and depression: relationship to cerebrospinal fluid monoamine metabolite levels. Biol Psychiatry 50: 783–791.

    Article  CAS  PubMed  Google Scholar 

  • Poole TB, Morgan DR. 1973. Differences in aggressive behavior between male mice (Mus musculus L.) in colonies of different sizes. Anim Behav 21: 788–795.

    Article  CAS  PubMed  Google Scholar 

  • Poole TB, Morgan HDR. 1976. Social and territorial behavior of laboratory mice (Mus-musculus L) in small complex areas. Anim Behav 24: 476–478.

    Article  Google Scholar 

  • Potegal M. 1991. Attack priming and satiation in female golden hamsters: tests of some alternatives to the aggression arousal interpretation. Aggress Behav 17: 327–335.

    Article  Google Scholar 

  • Potegal M, Tenbrink L. 1984. Behavior of attack-primed and attack-satiated female golden hamsters (Mesocricetus auratus). J Comp Psychol 98: 66–75.

    Article  Google Scholar 

  • Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, et al 1989. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338: 582–585.

    Article  CAS  PubMed  Google Scholar 

  • Puech AJ, Simon P, Chermat R, Boisseir JR. 1974. Profil neuropsychopharmacologique de l‘apomorphine. J Pharmacol 5: 241–254.

    CAS  Google Scholar 

  • Puglisi-Allegra S. 1980. Effects of sodium n-dipropylacetate, muscimol hydrobromide and (R,S) nipecotic acid amide on isolation-induced aggressive behavior. Psychopharmacology 70: 287–290.

    Article  CAS  PubMed  Google Scholar 

  • Puglisi-Allegra S, Cabib S. 1990. Effects of defeat experiences on dopamine metabolism in different brain areas of the mouse. Aggress Behav 16: 271–284.

    Article  CAS  Google Scholar 

  • Puglisi-Allegra S, Simler S, Kempf E, Mandel P. 1981. Involvement of the GABAergic system on shock-induced aggressive behavior in two strains of mice. Pharmacol Biochem Behav 14, S1: 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Raine A. 1996. Autonomic nervous system factors underlying disinhibited, antisocial, and violent behavior. Biosocial perspectives and treatment implications. Ann N Y Acad Sci 794: 46–59.

    Article  CAS  PubMed  Google Scholar 

  • Raine A, Lencz T, Bihrle S, La Casse L, Colletti P. 2000. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch Gen Psychiatry 57: 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Raine A, Meloy JR, Bihrle S, Stoddard J, La Casse L, et al 1998. Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behav Sci Law 16: 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Ratey JJ, Gordon A. 1993. The psychopharmacology of aggression: toward a new day. Psychopharmacol Bull 29: 65–73.

    CAS  PubMed  Google Scholar 

  • Ray A, Sharma KK, Alkondon M, Sen P. 1983. Possible interrelationship between the biogenic amines involved in the modulation of footshock aggression in rats. Arch Int Pharmacodyn Ther 265: 36–41.

    CAS  PubMed  Google Scholar 

  • Reimer JD, Petras ML. 1967. Breeding structure of the house mouse, Mus musculus, in a population cage. J Mammal 48: 88–99.

    Article  CAS  PubMed  Google Scholar 

  • Reisner IR, Mann JJ, Stanley M, Huang YY, Houpt KA. 1996. Comparison of cerebrospinal fluid monoamine metabolite levels in dominant-aggressive and non-aggressive dogs. Brain Res 714: 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Rewerski W, Kostowski W, Piechocki T, Rylski M. 1971. The effects of some hallucinogens on aggressiveness of mice and rats. I. Pharmacology 5: 314–320.

    Article  CAS  PubMed  Google Scholar 

  • Ricci LA, Grimes JM, Knyshevski I, Melloni RH. 2005. Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD(65)) immunoreactivity in hamster brain: correlation with offensive aggression. Brain Res 1035: 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Everitt BJ. 1996. Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol 6: 228–236.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers RJ, Waters AJ. 1985. Benzodiazepines and their antagonists: a pharmacoethological analysis with particular reference to effects on “aggression.” Neurosci Biobehav Rev 9: 21–35.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Arias M, Felip CM, Broseta I, Minarro J. 1999a. The dopamine D3 antagonist U-99194A maleate increases social behaviors of isolation-induced aggressive male mice. Psychopharmacology 144: 90–94.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Arias M, Pinazo J, Minarro J, Stinus L. 1999b. Effects of SCH 23390, raclopride, and haloperidol on morphine withdrawal-induced aggression in male mice. Pharmacol Biochem Behav 64: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Arias M, Minarro J, Aguilar MA, Pinazo J, Simon VM. 1998. Effects of risperidone and SCH 23390 on isolation-induced aggression in male mice. Eur Neuropsychopharmacol 8: 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguiz RM, Chu R, Caron MG, Wetsel WC. 2004. Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148: 185–198.

    Article  CAS  PubMed  Google Scholar 

  • Roeling TAP, Kruk MR, Schuurmans R, Veening JG. 1993. Behavioural responses of bicucculline methiodide injections into the ventral hypothalamus of freely moving, socially interacting rats. Brain Res 615: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA. 2000. Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents—toward an understanding of their favorable tolerability. Amino Acids 19: 133–149.

    Article  CAS  PubMed  Google Scholar 

  • Rolinski Z. 1975. Pharmacological studies on isolation-induced aggressiveness in mice in relation to biogenic amines. Pol J Pharmacol Pharm 27: 37–44.

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA. 2002. Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22: 324–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowlett JK, Platt DM, Lelas S, Atack JR, Dawson GR. 2005. Different GABA(A) receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA 102: 915–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph U, Crestani F, Mohler H. 2001. GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22: 188–194.

    Article  CAS  PubMed  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, et al 1999. Benzodiazepine actions mediated by specific gamma-aminobutyric acid-A receptor subtypes. Nature 401: 796–800.

    Article  CAS  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. 1998. Adrenergic alpha2c receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci 18: 3035–3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez C, Meier E. 1997. Behavioral profiles of SSRIs in animal models of depression, anxiety and aggression. Psychopharmacology 129: 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Arnt J, Moltzen EK. 1996. The antiaggressive potency of (-)-penbutolol involves both 5- HT1A and 5- HT1B receptors and beta-adrenoceptors. Eur J Pharmacol 297: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Arnt J, Hyttel J, Moltzen EK. 1993. The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology 110: 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Bergqvist PB, Brennum LT, Gupta S, Hogg S, et al 2003. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 167: 353–362.

    Article  CAS  Google Scholar 

  • Sandnabba NK. 1986. Effects of selective breeding for high and low aggressiveness and of fighting experience on odor discrimination in mice. Aggress Behav 12: 359–366.

    Article  Google Scholar 

  • Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F. 2004. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14: 1100–1109.

    Article  PubMed  Google Scholar 

  • Sari Y. 2004. Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28: 565–582.

    Article  CAS  PubMed  Google Scholar 

  • Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, et al 1999. Cellular and subcellular localization of 5-Hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88: 899–915.

    Article  CAS  PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, Lemeur M, Ramboz S, 1994b. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265: 1875–1878.

    Article  CAS  PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, Lemeur M, Ramboz S, et al 1994a. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265: 1875–1878.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CJ, Fadayel GM. 1995. The selective 5-Ht2A receptor antagonist, Mdl-100,907, increases dopamine efflux in the prefrontal cortex of the rat. Eur J Pharmacol 273: 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Scott JP, Fredericson E. 1951. The causes of fighting in mice and rats. Physiol Zool 24: 273–309.

    Article  Google Scholar 

  • Senault B. 1968. Syndrome agressif induit par l'apomorphine chez le Rat. J Physiol 60: 543–544.

    Google Scholar 

  • Senault B. 1971. Influence de l'isolement sur le comportement d'agressivit, intrasp,cifique induit par l'apomorphine chez le rat. Psychopharmacologia 20: 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Sgoifo A, deBoer SF, Haller J, Koolhaas JM. 1996. Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: relationship with aggression. Physiol Behav 60(6): 1403–1407.

    Article  CAS  PubMed  Google Scholar 

  • Shader RI, Greenblatt DJ. 1993. Drug-therapy—use of benzodiazepines in anxiety disorders. New Eng J Med 328: 1398–1405.

    Article  CAS  PubMed  Google Scholar 

  • Shaikh MB, De Lanerolle NC, Siegel A. 1997. Serotonin 5-HT1A and 5-HT2/1C receptors in the midbrain periaqueductal gray differentially modulate defensive rage behavior elicited from the medial hypothalamus of the cat. Brain Res 765: 198–207.

    Article  CAS  PubMed  Google Scholar 

  • Shih JC, Chen K, Ridd MJ. 1999a. Monoamine oxidase: from genes to behavior. Ann Rev Neurosci 22: 197–217.

    Article  CAS  PubMed  Google Scholar 

  • Shih JC, Ridd MJ, Chen K, Meehan WP, Kung MP, et al 1999b. Ketanserin and tetrabenazine aggression in mice lacking monoamine oxidase A Brain Res 835: 104–112.

    Article  CAS  PubMed  Google Scholar 

  • Siegel A, Mirsky AF. 1994. The neurobiology of violence and aggression. Reiss AJ Jr, (eds) Understanding and preventing violence. Biobehavioral influences. National Academy Press; Washington, DC:pp. 59–172. editor.

    Google Scholar 

  • Siegel A, Roeling TAP, Gregg TR, Kruk MR. 1999. Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23: 359–389.

    Article  CAS  PubMed  Google Scholar 

  • Sijbesma H, Schipper J, De Kloet ER, Mos J, Van Aken H, et al 1991. Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38: 447–458.

    Article  CAS  PubMed  Google Scholar 

  • Silver LM. 1995. Mouse genetics. Concepts and Applications.

    Google Scholar 

  • Simler S, Puglisi-Allegra S, Mandel P. 1982. Gamma-aminobutyric acid in brain areas of isolated aggressive or non-aggressive inbred strains of mice. Pharmacol Biochem Behav 16: 57–61.

    Article  CAS  PubMed  Google Scholar 

  • Sinton CM, Fallon SL. 1988b. Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 157: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Sinton CM, Fallon SL. 1988a. Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 157: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Smuts BB. 1986. Sexual competition and mate choice. Primate societies. Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT, editors. Chicago: University of Chicago Press; pp. 385–399.

    Chapter  Google Scholar 

  • Sokolov BP, Schindler CW, Cadet JL. 2004. Chronic methamphetamine increases fighting in mice. Pharmacol Biochem Behav 77: 319–326.

    Article  CAS  PubMed  Google Scholar 

  • Sorgi PJ, Ratey JJ, Polakoff S. 1986. Beta-adrenergic blockers for the control of aggressive behaviors in patients with chronic schizophrenia. Am J Psychiatry 143: 775–776.

    Article  CAS  PubMed  Google Scholar 

  • Spigset O. 1999. Adverse reactions of selective serotonin reuptake inhibitors—Reports from a spontaneous reporting system. Drug Safety 20: 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Sprouse JS. 1991. Inhibition of dorsal raphe cell firing by MDL 73005EF, a novel 5-HT1A receptor ligand. Eur J Pharmacol 201: 163–169.

    Article  CAS  PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK. 1987. Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK. 1988. Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonist: a comparative study with dorsal raphe neurons. Neuropharmacology 27: 707–715.

    Article  CAS  PubMed  Google Scholar 

  • Stanford MS, Houston RJ, Mathias CW, Greve KW, Villemarette-Pittman NR, et al 2001. A double-blind placebo-controlled crossover study of phenytoin in individuals with impulsive aggression. Psychiatry Res 103: 193–203.

    Article  CAS  PubMed  Google Scholar 

  • Steiniger F. 1950. Beitrag zur Soziologie und sonstigen Biologie der Wanderratte. Zeitschrift für Tierpsychologie 7: 356–379.

    Article  Google Scholar 

  • Stoff DM, Vitiello B. 1996. Role of serotonin in aggression of children and adolesecents: biochemical and phamacological studies. Aggression and violence: Genetic, neurobiological and biosocial perspectives. Stoff DM, editor. Mahwah, NJ: Lawrence Erlbaum Associates; pp. 101–123.

    Google Scholar 

  • Stork O, Welzl H, Cremer H, Schachner M. 1997. Increased intermale aggression and neuroendocrine response in mice deficient for the neural cell adhesion molecule (NCAM). Eur J Neurosci 9: 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  • Stork O, Ji FY, Kaneko K, Stork S, Yoshinobu Y, et al 2000. Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res 865: 45–58.

    Article  CAS  PubMed  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G. 2002. Loss of sex discrimination and male–male aggression in mice deficient for TRP2. Science 295: 1493–1500.

    Article  CAS  PubMed  Google Scholar 

  • Strous RD, Bark N, Parsia SS, Volavka J, Lachman HM. 1997. Analysis of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior. Psychiatry Res 69: 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Sukhotina IA, Bespalov AY. 2000. Effects of the NMDA receptor channel blockers memantine and MRZ 2/579 on morphine withdrawal-facilitated aggression in mice. Psychopharmacology 149: 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Sukonick DL, Pollock BG, Sweet RA, Mulsant BH, Rosen J, et al 2001. The 5-HTTPR*S/*L polymorphism and aggressive behavior in Alzheimer disease. Arch Neurol 58: 1425–1428.

    Article  CAS  PubMed  Google Scholar 

  • Summers CH, Greenberg N. 1994. Somatic correlates of adrenergic activity during aggression in the lizard, Anolis carolinensis. Horm Behav 28: 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Summers CH, Forster GL, Korzan WJ, Watt MJ, Larson ET, et al 2005. Dynamics and mechanics of social rank reversal. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191: 241–252.

    Article  PubMed  Google Scholar 

  • Svensson TH, Bunney BS, Aghajanian GK. 1975. Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Brain Res 92: 291–306.

    Article  CAS  PubMed  Google Scholar 

  • Swann AC. 2003. Neuroreceptor mechanisms of aggression and its treatment. J Clin Psychiatry 64: 26–35.

    CAS  PubMed  Google Scholar 

  • Swanson JW, Swartz MS, Elbogen EB, Van Dorn RA. 2004. Reducing violence risk in persons with schizophrenia: olanzapine versus risperidone. J Clin Psychiatry 65: 1666–1673.

    Article  CAS  PubMed  Google Scholar 

  • Sweet RA, Pollock BG, Sukonick DL, Mulsant BH, Rosen J, et al 2001. The 5-HTTPR polymorphism confers liability to a combined phenotype of psychotic and aggressive behavior in Alzheimer disease. Int Psychogeriatrics 13: 401–409.

    Article  CAS  Google Scholar 

  • Tao R, Auerbach SB. 2000. Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14: 100–113.

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Auerbach SB. 2002. GABAergic and glutamatergic afferents in the dorsal raphe nucleus mediate morphine-induced increases in serotonin efflux in the rat central nervous system. J Pharmacol Exp Ther 303: 704–710.

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Ma Z, Auerbach SB. 1996. Differential regulation of 5-hydroxytryptamine release by GABAA and GABAB receptors in midbrain raphe nuclei and forebrain of rats. Br J Pharmacol 119: 1375–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoa NB, Eichelman B, Richardson JS, Jacobowitz D. 1972. 6-Hydroxydopa depletion of brain norepinephrine and the facilitation of aggressive behavior. Science 178: 75–77.

    Article  CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA. 1992a. Effects of SKF38393 and quinpirole on patterns of aggressive, motor and schedule-controlled behaviors in mice. Behav Pharmacol 3: 553–565.

    Article  CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA. 1992b. Morphine withdrawal aggression: modification with D1 and D2 receptor agonists. Psychopharmacology 108: 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Tidey JW, Miczek KA. 1996. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721: 140–149.

    Article  CAS  PubMed  Google Scholar 

  • Tiihonen J, Kuikka J, Bergstrom K, Hakola P, Karhu J, et al 1995. Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics. Nat Med 1: 654–657.

    Article  CAS  PubMed  Google Scholar 

  • Tobe A, Yoshida Y, Ikoma H, Tonomura S, Kikumoto R. 1981. Pharmacological evaluation of 2-(4-methylaminobutoxy)diphenylmethane hydrochloride (MCI-2016), a new psychotropic drug with antidepressant activity. Arzneimittelforschung/Drug Research 31: 1278–1285.

    CAS  PubMed  Google Scholar 

  • Tong J, Hornykiewicz O, Kish SJ. 2006. Identification of a noradrenaline-rich subdivision of the human nucleus accumbens. J Neurochem 96: 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Traskman-Bendz L, Alling C, Oreland L, Regnell G, Vinge E, et al 1992. Prediction of suicidal behavior from biologic tests. J Clin Psychopharmacol 12: 21S–26S.

    Article  CAS  PubMed  Google Scholar 

  • Troisi A, Vicario E, Nuccetelli F, Ciani N, Pasini A. 1995. Effects of fluoxetine on aggressive behavior of adult inpatients with mental retardation and epilepsy. Pharmacopsychiatry 28: 1–4.

    Article  Google Scholar 

  • Twarog BM, Page IH, Bailey H. 1953. Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175: 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Twitchell GR, Hanna GL, Cook EH, Stoltenberg SF, Fitzgerald HE, et al 2001. Serotonin transporter promoter polymorphism genotype is associated with behavioral disinhibition and negative affect in children of alcoholics. Alcohol Clin Exp Res 25: 953–959.

    Article  CAS  PubMed  Google Scholar 

  • Tyler CB, Miczek KA. 1982. Effects of phencyclidine on aggressive behavior in mice. Pharmacol Biochem Behav 17: 503–510.

    Article  CAS  PubMed  Google Scholar 

  • Uhrich J. 1938. The social hierarchy in albino mice. J Comp Psychol 25: 373–413.

    Article  Google Scholar 

  • van der Vegt BJ, Lieuwes N, Cremers TIFH, de Boer SF, Koolhaas JM. 2003. Cerebrospinal fluid monoamine and metabolite concentrations and aggression in rats. Horm Behav 44: 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Vegt BJ, de Boer SF, Buwalda B, de Ruiter AJ, de Jong JG, et al 2001. Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression. Physiol Behav 74: 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Van Erp AMM, Miczek KA. 2000. Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20: 9320–9325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Oortmerssen GA, Bakker TCM. 1981. Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav Genet 11: 115–126.

    Article  CAS  PubMed  Google Scholar 

  • VanoverKE, SurukiM, RobledoS, HuberM, WielandS, et al 1999a. Positive allosteric modulators of the GABAA receptor: differential interacton of benzodiazepines and neuroactive steroids with ethanol. Psychopharmacology 141: 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Vanover KE, Suruki M, Robledo S, Huber M, Wieland S, et al 1999b. Positive allosteric modulators of the GABAA receptor: differential interacton of benzodiazepines and neuroactive steroids with ethanol. Psychopharmacology 141: 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Vekovischeva OY, Aitta-aho T, Echenko O, Kankaanpaa A, Seppala T, et al 2004. Reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Genes Brain Behav 3: 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Verberne AJ, Owens NC. 1998. Cortical modulation of the cardiovascular system. Prog Neurobiol 54: 149–168.

    Article  CAS  PubMed  Google Scholar 

  • Villalba C, Boyle PA, Caliguri EJ, De Vries GJ. 1997. Effects of the selective serotonin reuptake inhibitor fluoxetine on social behaviors in male and female prairie voles (Microtus ochrogaster). Horm Behav 32: 184–191.

    Article  CAS  PubMed  Google Scholar 

  • Virkkunen M, De Jong J, Bartko J, Linnoila M. 1989. Psychobiological concomitants of history of suicide attempts among violent offenders and impulsive fire setters. Arch Gen Psychiatry 46: 604–606.

    Article  CAS  PubMed  Google Scholar 

  • Virkkunen M, Nuutila A, Goodwin FK, Linnoila M. 1987. Cerebrospinal-fluid monoamine metabolite levels in male arsonists. Arch Gen Psychiatry 44: 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Virkkunen M, Rawlings R, Tokola R, Poland RE, Guidotti A, et al 1994. Csf biochemistries, glucose-metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy-volunteers. Arch Gen Psychiatry 51: 20–27.

    Article  CAS  PubMed  Google Scholar 

  • Vitiello B, Stoff DM. 1997. Subtypes of aggression and their relevance to child psychiatry. J Am Acad Child Adolesc Psychiatry 36: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Volavka J, Czobor P, Nolan K, Sheitman B, Lindenmayer JP, et al 2004. Overt aggression and psychotic symptoms in patients with schizophrenia treated with clozapine, olanzapine, risperidone, or haloperidol. J Clin Psychopharmacol 24: 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Volavka J, Czobor P, Citrome L, McQuade RD, Carson WH, et al 2005. Efficacy of aripiprazole against hostility in schizophrenia and schizoaffective disorder: data from 5 double-blind studies. J Clin Psychiatry 66: 1362–1366.

    Article  CAS  PubMed  Google Scholar 

  • Wahlsten D, Crabbe JC, Dudek BC. 2001. Behavioural testing of standard inbred and 5HT1B knockout mice: implications of absent corpus callosum. Behav Brain Res 125: 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Walsh MT, Dinan TG. 2001. Selective serotonin reuptake inhibitors and violence: a review of the available evidence. Acta Psychiatr Scand 104: 84–91.

    Article  CAS  PubMed  Google Scholar 

  • Walters JR, Seyfarth RM. 1986. Conflict and cooperation.Primate societies. Smuts BB, Cheney DL, Seyfarth RM, Wrangham RW, Struhsaker TT, editors. Chicago: The University of Chicago Press; pp. 306–317.

    Google Scholar 

  • Weerts EM, Miczek KA. 1996. Primate vocalizations during social separation and aggression: effects of alcohol and benzodiazepines. Psychopharmacology 127: 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Weerts EM, Miller LG, Hood KE, Miczek KA. 1992. Increased GABAA-dependent chloride uptake in mice selectively bred for low aggressive behavior. Psychopharmacology 108: 196–204.

    Article  CAS  PubMed  Google Scholar 

  • Weiger WA, Bear DM. 1988. An approach to the neurology of aggression. J Psychiatr Res 22: 85–98.

    Article  CAS  PubMed  Google Scholar 

  • Weisman AM, Berman ME, Taylor SP. 1998. Effects of clorazepate, diazepam, and oxazepam on a laboratory measurement of aggression in men. Int Clin Psychopharmacol 13: 183–188.

    Article  CAS  PubMed  Google Scholar 

  • Welch BL, Welch AS. 1965. Effect of grouping on the level of brain norepinephrine in white swiss mice. Life Sci 4: 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  • Wersinger SR, Ginns EI, O'Carroll AM, Lolait SJ, Young WS III. 2002. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7: 975–984.

    Article  CAS  PubMed  Google Scholar 

  • Westergaard GC, Suomi SJ, Higley JD, Mehlman PT. 1999. CSF 5-HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology 146: 440–446.

    Article  CAS  PubMed  Google Scholar 

  • Wilder J. 1958. Modern psychophysiology and the law of initial value. Am J Psychother 12: 199–221.

    Article  CAS  PubMed  Google Scholar 

  • Wilmot CA, Vander Wende C, Spoerlein MT. 1987. The effects of phencyclidine on fighting in differentially housed mice. Pharmacol Biochem Behav 28: 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO. 1974. Sociobiology. Cambridge: The Belknap Press.

    Google Scholar 

  • WingfieldJC, Ball GF, Dufty AM Jr, Hegner RE, Ramenofsky M. 1987. Testosterone and aggression in birds. Am Sci 75: 602–608.

    Google Scholar 

  • Winslow JT, Miczek KA. 1983. Habituation of aggression in mice: pharmacological evidence of catecholaminergic and serotonergic mediation. Psychopharmacology 81: 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR. 1993. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365: 545–548.

    Article  CAS  PubMed  Google Scholar 

  • Winslow JT, Hearn EF, Ferguson J, Young LJ, Matzuk MM, et al 2000. Infant vocalization, adult aggression, and fear behavior of an oxytocin null mutant mouse. Horm Behav 37: 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Wise RA. 2005. Forebrain substrates of reward and motivation. J Comp Neurol 493: 115–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrangham RW. 1999. Evolution of coalitionary killing. Am J Phys Anthropol Suppl 29: 1–30.

    Article  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L. 1995. Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351: 357–373.

    Article  CAS  PubMed  Google Scholar 

  • Yanai K, Son LZ, Endou M, Sakurai E, Nakagawasai O, et al 1998. Behavioral characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience 87: 479–487.

    Article  CAS  PubMed  Google Scholar 

  • Yap JJ, Covington HE III, Gale MC, Datta R, Miczek KA. 2005. Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology (Berl) 179: 230–239.

    Article  CAS  Google Scholar 

  • Yeh SR, Fricke RA, Edwards DH. 1996. The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271: 366–369.

    Article  CAS  PubMed  Google Scholar 

  • Yodyingyuad U, de la Riva C, Abbott DH, Herbert J, Keverne EB. 1985. Relationship between dominance hierarchy, cerebrospinal fluid levels of amine transmitter metabolites (5-hydroxyindole acetic acid and homovanillic acid) and plasma cortisol in monkeys. Neuroscience 16: 851–858.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura H. 1984. Pharmaco-ethological analysis of agonistic behavior between resident and intruder mice: effects of psychotropic drugs. Folia Pharmacol Jpn 84: 221–228.

    Article  CAS  Google Scholar 

  • Young KA, Berry ML, Mahaffey CL, Saionz JR, Hawes NL, et al 2002a. Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent. Behav Brain Res 132: 145–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young SE, Smolen A, Corley RP, Krauter KS, DeFries JC, et al 2002b. Dopamine transporter polymorphism associated with externalizing behavior problems in children. Am J Med Genet 114: 144–149.

    Article  PubMed  Google Scholar 

  • Yudofsky S, Williams D, Gorman J. 1981. Propranolol in the treatment of rage and violent behavior in patients with chronic brain syndromes. Am J Psychiatry 138: 218–220.

    Article  CAS  PubMed  Google Scholar 

  • Zalsman G, Frisch A, Bromberg M, Gelernter J, Michaelovsky E, et al 2001. Family-based association study of serotonin transporter promoter in suicidal adolescents: no association with suicidality but possible role in violence traits. Am J Med Genet 105: 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Zarcone JR, Hellings JA, Crandall K, Reese RM, Marquis J, et al 2001. Effects of risperidone on aberrant behavior of persons with developmental disabilities: I. A double-blind crossover study using multiple measures. Am J Ment Retard 106: 525–538.

    CAS  PubMed  Google Scholar 

  • Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, et al 1999. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21: S52–S60.

    Article  Google Scholar 

  • Zifa E, Fillion G. 1992. 5-Hydroxytryptamine receptors. Pharmacol Rev 44: 401–457.

    CAS  PubMed  Google Scholar 

  • Zitzman DL, De Bold JF, Rocha B, Miczek KA. 2004. Effects of estradiol on aggressive behavior in ovariectomized female mice. Abstr Soc Neurosci.

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to J. Thomas Sopko for his assistance with manuscript preparation and to NIAAA and NIDA grants (AA013983, DA02632) for financial support.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Miczek, K.A., Faccidomo, S.P., Fish, E.W., DeBold, J.F. (2007). Neurochemistry and Molecular Neurobiology of Aggressive Behavior. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_7

Download citation

Publish with us

Policies and ethics