Skip to main content

Calcium Regulation by EF-hand Protein in the Brain

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract

The EF-hand containing calcium-binding proteins (CaBP) form a large family of proteins that is continuously growing, adding more complexity to calcium-dependent cellular processes. In this review, we give an overview of the different classes of EF-hand containing CaBP that play important roles in the CNS. We have indicated the cellular function, when known, of each protein, as well as its main target proteins in relation to the function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaM:

Calmodulin

DAPK:

death-associated protein kinase

GCAP:

Guanylate Cyclase-Activating Protein

KChIPs:

potassium channel interacting proteins

NCS:

neuronal calcium sensors

VILIP:

Visinin-like Protein

References

  • Aberg F, Kozlova EN. 2000. Metastasis-associated mts1 (S100A4) protein in the developing and adult central nervous system. J Comp Neurol 424: 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Allen BG, Durussel I, Walsh MP, Cox JA. 1996. Characterization of the Ca2+-binding properties of calgizzarin (S100C) isolated from chicken gizzard smooth muscle. Biochem Cell Biol 74: 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Allore R, O'Hanlon D, Price R, Neilson K, Willard HF, et al. 1988. Gene encoding the beta subunit of S100 protein is on chromosome 21: Implications for Down syndrome. Science 239: 1311–1313.

    Article  PubMed  CAS  Google Scholar 

  • Ames JB, Tanaka T, Stryer L, Ikura M. 1996. Portrait of a myristoyl switch protein. Curr Opin Struct Biol 6: 432–438.

    Article  PubMed  CAS  Google Scholar 

  • Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, et al. 1997. Molecular mechanics of calcium-myristoyl switches. Nature 389: 198–202.

    Article  PubMed  CAS  Google Scholar 

  • An WF, Bowlby MR, Betty M, Cao J, Ling HP, et al. 2000. Modulation of A-type potassium channels by a family of calcium sensors. Nature 403: 553–556.

    Article  PubMed  CAS  Google Scholar 

  • Arancio O, Zhang HP, Chen X, Lin C, Trinchese F, et al. 2004. RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J 23: 4096–4105.

    Article  PubMed  CAS  Google Scholar 

  • Arcuri C, Giambanco I, Bianchi R, Donato R. 2002. Annexin V, annexin VI, S100A1 and S100B in developing and adult avian skeletal muscles. Neuroscience 109: 371–388.

    Article  PubMed  CAS  Google Scholar 

  • Barger SW, Van Eldik LJ, Mattson MP. 1995. S100 beta protects hippocampal neurons from damage induced by glucose deprivation. Brain Res 677: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Barraclough R. 1998. Calcium-binding protein S100A4 in health and disease. Biochim Biophys Acta 1448: 190–199.

    Article  PubMed  CAS  Google Scholar 

  • Barroso MR, Bernd KK, De Witt ND, Chang A, Mills K, et al. 1996. A novel Ca2+-binding protein, p22, is required for constitutive membrane traffic. J Biol Chem 271: 10183–10187.

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Cole RD. 1988. Interactions between the microtubule-associated tau proteins and S100b regulate tau phosphorylation by the Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263: 5876–5883.

    PubMed  CAS  Google Scholar 

  • Baudier J, Bergeret E, Bertacchi N, Weintraub H, Gagnon J, et al. 1995. Interactions of myogenic bHLH transcription factors with calcium-binding calmodulin and S100a (alpha alpha) proteins. Biochemistry 34: 7834–7846.

    Article  PubMed  CAS  Google Scholar 

  • Bazhin AV, Savchenko MS, Shifrina ON, Chikina SY, Goncharskaia, et al. 2003. Extracts of lung cancer cells reveal antitumour antibodies in sera of patients with lung cancer. Eur Respir J 21: 342–346.

    Article  PubMed  CAS  Google Scholar 

  • Bazhin AV, Savchenko MS, Belousov EV, Jaques G, Philippov PP. 2004a. Stimulation of the aberrant expression of a paraneoplastic antigen, recoverin, in small cell lung cancer cell lines. Lung Cancer 45: 299–305.

    Article  PubMed  Google Scholar 

  • Bazhin AV, Savchenko MS, Shifrina ON, Demoura SA, Chikina SY, et al. 2004b. Recoverin as a paraneoplastic antigen in lung cancer: The occurrence of anti-recoverin autoantibodies in sera and recoverin in tumors. Lung Cancer 44: 193–198.

    Article  PubMed  Google Scholar 

  • Bell K, Shokrian D, Potenzieri C, Whitaker-Azmitia PM. 2003. Harm avoidance, anxiety, and response to novelty in the adolescent S-100beta transgenic mouse: Role of serotonin and relevance to Down syndrome. Neuropsychopharmacology 28: 1810–1816.

    Article  PubMed  CAS  Google Scholar 

  • Benaud C, Gentil BJ, Assard N, Court M, Garin J, et al. 2004. AHNAK interaction with the annexin 2/S100A10 complex regulates cell membrane cytoarchitecture. J Cell Biol 164: 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Benfenati F, Ferrari R, Onofri F, Arcuri C, Giambanco I, et al. 2004. S100A1 codistributes with synapsin I in discrete brain areas and inhibits the F-actin-bundling activity of synapsin I. J Neurochem 89: 1260–1270.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ. 1998. Neuronal calcium signaling. Neuron 21: 13–26.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ. 2003. Cardiac calcium signalling. Biochem Soc Trans 31: 930–933.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517–529.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya S, Bunick CG, Chazin WJ. 2004. Target selectivity in EF-hand calcium binding proteins. Biochim Biophys Acta 1742: 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard H, Grochulski P, Li Y, Arthur JS, Davies PL, et al. 1997. Structure of a calpain Ca(2+)-binding domain reveals a novel EF-hand and Ca(2+)-induced conformational changes. Nat Struct Biol 4: 532–538.

    Article  PubMed  CAS  Google Scholar 

  • Boom A, Pochet R, Authelet M, Pradier L, Borghgraef P, et al. 2004. Astrocytic calcium/zinc binding protein S100A6 over expression in Alzheimer's disease and in PS1/APP transgenic mice models. Biochim Biophys Acta 1742: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Bootman MD, Berridge MJ, Roderick HL. 2002. Activating calcium release through inositol 1,4,5-trisphosphate receptors without inositol 1,4,5-trisphosphate. Proc Natl Acad Sci USA 99: 7320–7322.

    Article  PubMed  CAS  Google Scholar 

  • Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O. 2001. Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J Biol Chem 276: 11949–11955.

    Article  PubMed  CAS  Google Scholar 

  • Braunewell KH, Gundelfinger ED. 1999. Intracellular neuronal calcium sensor proteins: A family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 295: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Weiss JL. 2001. The neuronal calcium sensor family of Ca2+-binding proteins Biochem J 353: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD. 2004. The neuronal calcium-sensor proteins. Biochim Biophys Acta 1742: 59–68.

    Article  CAS  Google Scholar 

  • Burgoyne RD, O'Callaghan DW, Hasdemir B, Haynes LP, Tepikin AV. 2004. Neuronal Ca2+-sensor proteins: Multitalented regulators of neuronal function. Trends Neurosci 27: 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JD. 2004. A role for calsenilin and related proteins in multiple aspects of neuronal function. Biochem Biophys Res Commun 322: 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  • Camby I, Nagy N, Lopes MB, Schafer BW, Maurage CA, et al. 1999. Supratentorial pilocytic astrocytomas, astrocytomas, anaplastic astrocytomas and glioblastomas are characterized by a differential expression of S100 proteins. Brain Pathol 9: 1–19.

    PubMed  CAS  Google Scholar 

  • Camby I, Lefranc F, Titeca G, Neuci S, Fastrez M, et al. 2000. Differential expression of S100 calcium-binding proteins characterizes distinct clinical entities in both WHO grade II and III astrocytic tumours. Neuropathol Appl Neurobiol 26: 76–90.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E, Molinari M. 1998. Calpain: A protease in search of a function? Biochem Biophys Res Commun 247: 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E, Klee C. 1999. Calcium as a Cellular Regulator. New York: Oxford University Press.

    Google Scholar 

  • Carafoli E. 2002. Calcium signaling: A tale for all seasons. Proc Natl Acad Sci USA 99: 1115–1122.

    Article  PubMed  CAS  Google Scholar 

  • Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR. 1999. DREAM is a Ca2+-regulated transcriptional repressor. Nature 398: 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Chan WY, Xia CL, Dong DC, Heizmann CW, Yew DT. 2003. Differential expression of S100 proteins in the developing human hippocampus and temporal cortex. Microsc Res Tech 60: 600–613.

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Inglese J, Lefkowitz RJ, Hurley JB. 1995. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem 270: 18060–18066.

    Article  PubMed  CAS  Google Scholar 

  • Cheney RE, Mooseker MS. 1992. Unconventional myosins. Curr Opin Cell Biol 4: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Chun KY, Sacks DB. 2000. The interaction of calmodulin with novel target proteins. Calcium: The Molecular Basis of Calcium Action in Biology and Medicine. Pochet R, Donato R, Haiech J, Heizmann CW, Gerke V, editors. Dordecht: Kluwer Academic Publishers; pp. 541–563.

    Google Scholar 

  • Cohen P, Klee C. 1988. Calmodulin. New York: Elsevier.

    Google Scholar 

  • Colbran RJ. 2004. Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. J Neurosci 24: 8404–8409.

    Article  PubMed  CAS  Google Scholar 

  • Cox JA, Malnoe A, Stein EA. 1981. Regulation of brain cyclic nucleotide phosphodiesterase by calmodulin. A quantitative analysis. J Biol Chem 256: 3218–3222.

    PubMed  CAS  Google Scholar 

  • Cox JA, Durussel I, Comte M, Nef S, Nef P, et al. 1994. Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. J Biol Chem 269: 32807–32813.

    PubMed  CAS  Google Scholar 

  • Croall DE, De Martino GN. 1991. Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol Rev 71: 813–847.

    PubMed  CAS  Google Scholar 

  • Crocker SJ, Smith PD, Jackson-Lewis V, Lamba WR, Hayley SP, et al. 2003. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J Neurosci 23: 4081–4091.

    PubMed  CAS  Google Scholar 

  • da Silva AC, Reinach FC. 1991. Calcium binding induces conformational changes in muscle regulatory proteins. Trends Biochem Sci 16: 53–57.

    Article  PubMed  Google Scholar 

  • Danchin A, Sezer O, Glaser P, Chalon P, Caput D. 1989. Cloning and expression of mouse-brain calmodulin as an activator of Bordetella pertussis adenylate cyclase in Escherichia coli. Gene 80: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • del Arco A, Satrustegui J. 1998. Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem 273: 23327–23334.

    Article  PubMed  CAS  Google Scholar 

  • del Arco A, Agudo M, Satrustegui J. 2000. Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. Biochem J 345 (Pt 3): 725–732.

    Article  PubMed  CAS  Google Scholar 

  • del Arco A, Satrustegui J. 2004. Identification of a novel human subfamily of mitochondrial carriers with calcium-binding domains. J Biol Chem 279: 24701–24713.

    Article  PubMed  CAS  Google Scholar 

  • Delphin C, Ronjat M, Deloulme JC, Garin G, Debussche L, et al. 1999. Calcium-dependent interaction of S100B with the C-terminal domain of the tumor suppressor p53. J Biol Chem 274: 10539–10544.

    Article  PubMed  CAS  Google Scholar 

  • Di Rosa G, Odrijin T, Nixon RA, Arancio O. 2002. Calpain inhibitors: A treatment for Alzheimer's disease. J Mol Neurosci 19: 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, et al. 1991. Recoverin: A calcium sensitive activator of retinal rod guanylate cyclase. Science 251: 915–918.

    Article  PubMed  CAS  Google Scholar 

  • Donato R. 1988. Calcium-independent, pH-regulated effects of S-100 proteins on assembly-disassembly of brain microtubule protein in vitro. J Biol Chem 263: 106–110.

    PubMed  CAS  Google Scholar 

  • Donato R. 2003. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech 60: 540–551.

    Article  PubMed  CAS  Google Scholar 

  • Dyck RH, Bogoch II, Marks A, Melvin NR, Teskey GC. 2002. Enhanced epileptogenesis in S100B knockout mice. Brain Res Mol Brain Res 106: 22–29.

    Article  PubMed  CAS  Google Scholar 

  • Ermak G, Morgan TE, Davies KJ. 2001. Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer's disease. J Biol Chem 276: 38787–38794.

    Article  PubMed  CAS  Google Scholar 

  • Fano G, Angelella P, Mariggio D, Aisa MC, Giambanco I, et al. 1989. S-100a0 protein stimulates the basal (Mg2+-activated) adenylate cyclase activity associated with skeletal muscle membranes. FEBS Lett 248: 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Ferri A, Nencini M, Battistini S, Giannini F, Siciliano G, et al. 2004. Activity of protein phosphatase calcineurin is decreased in sporadic and familial amyotrophic lateral sclerosispatients. J Neurochem 90: 1237–1242.

    Article  PubMed  CAS  Google Scholar 

  • Filipek A, Wojda U, Lesniak W. 1995. Interaction of calcyclin and its cyanogen bromide fragments with annexin II and glyceraldehyde 3-phosphate dehydrogenase. Int J Biochem Cell Biol 27: 1123–1131.

    Article  PubMed  CAS  Google Scholar 

  • Filipek A, Wojda U. 1996. p30, a novel protein target of mouse calcyclin (S100A6). Biochem J 320: 585–587.

    PubMed  CAS  Google Scholar 

  • Filipek A, Jastrzebska B, Nowotny M, Kuznicki J. 2002. CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 277: 28848–28852.

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Koller M, Flura M, Mathews S, Strehler-Page MA, et al. 1988. Multiple divergent mRNAs code for a single human calmodulin. J Biol Chem 263: 17055–17062.

    PubMed  CAS  Google Scholar 

  • Ford HL, Zain SB. 1995. Interaction of metastasis associated Mts1 protein with nonmuscle myosin. Oncogene 10: 1597–1605.

    PubMed  CAS  Google Scholar 

  • Fritz G, Heizmann CW. 2004. 3D structures of the calcium and zinc binding S100 proteins. Handbook of Metalloproteins, Vol. 3.Messerschmidt A, Bode W, Cygler M, editors. Chichester: Wiley; pp. 529–540.

    Google Scholar 

  • Frizzo JK, Tramontina F, Bortoli E, Gottfried C, Leal RB, et al. 2004. S100B-mediated inhibition of the phosphorylation of GFAP is prevented by TRTK-12. Neurochem Res 29: 735–740.

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Oomatsuzawa A, Kuzumaki N, Kondo Y. 1994. Calcium-dependent regulation of smooth muscle calponin by S100. J Biochem (Tokyo) 116: 121–127.

    CAS  Google Scholar 

  • Garbuglia M, Verzini M, Donato R. 1998. Annexin VI binds S100A1 and S100B and blocks the ability of S100A1 and S100B to inhibit desmin and GFAP assemblies into intermediate filaments. Cell Calcium 24: 177–191.

    Article  PubMed  CAS  Google Scholar 

  • Garbuglia M, Verzini M, Sorci G, Bianchi R, Giambanco I, et al. 1999. The calcium-modulated proteins, S100A1 and S100B, as potential regulators of the dynamics of type III intermediate filaments. Braz J Med Biol Res 32: 1177–1185.

    Article  PubMed  CAS  Google Scholar 

  • Garbuglia M, Verzini M, Hofmann A, Huber R, Donato R. 2000. S100A1 and S100B interactions with annexins. Biochim Biophys Acta 1498: 192–206.

    Article  PubMed  CAS  Google Scholar 

  • Gentil BJ, Delphin C, Mbele GO, Deloulme JC, Ferro M, et al. 2001. The giant protein AHNAK is a specific target for the calcium- and zinc-binding S100B protein: Potential implications for Ca2+ homeostasis regulation by S100B. J Biol Chem 276: 23253–23261.

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Wojtowicz JM, Marks A, Roder J. 1995. Overexpression of a calcium-binding protein, S100 beta, in astrocytes alters synaptic plasticity and impairs spatial learning in transgenic mice. Learn Mem 2: 26–39.

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Roder J. 1996. Spatial and nonspatial learning in mice: Effects of S100 beta overexpression and age. Neurobiol Learn Mem 66: 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Gill KD, Gupta V, Sandhir R. 2003. Ca2+/calmodulin-mediated neurotransmitter release and neurobehavioural deficits following lead exposure. Cell Biochem Funct 21: 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, et al. 2001. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron 30: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Gorczyca WA, Gray-Keller MP, Detwiler PB, Palczewski K. 1994. Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc Natl Acad Sci USA 91: 4014–4018.

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Yamagata K, Miki N, Kondo H. 1990. Direct photosensitivity of chick pinealocytes as demonstrated by visinin immunoreactivity. Cell Tissue Res 262: 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Gracy KN, Clarke CL, Meyers MB, Pickel VM. 1999. N-methyl-d-aspartate receptor 1 in the caudate-putamen nucleus: Ultrastructural localization and co-expression with sorcin, a 22,000 mol. wt calcium binding protein. Neuroscience 90: 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS, Stanley LC, Ling C, White L, Mac Leod V, et al. 1989. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer's disease. Proc Natl Acad Sci USA 86: 7611–7615.

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS, Sheng JG, McKenzie JE, Royston MC, Gentleman SM, et al. 1998. Life-long overexpression of S100beta in Down's syndrome: Implications for Alzheimer's pathogenesis. Neurobiol Aging 19: 401–405.

    Article  PubMed  CAS  Google Scholar 

  • Groth RD, Dunbar RL, Mermelstein PG. 2003. Calcineurin regulation of neuronal plasticity. Biochem Biophys Res Commun 311: 1159–1171.

    Article  PubMed  CAS  Google Scholar 

  • Guerini D. 1997. Calcineurin: Not just a simple protein phosphatase. Biochem Biophys Res Commun 235: 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Hussain T, Mac Lennan GT, Fu P, Patel J, et al. 2003. Differential expression of S100A2 and S100A4 during progression of human prostate adenocarcinoma. J Clin Oncol 21: 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson EL, Girault JA, Hemmings HC Jr, Nairn AC, Greengard P. 1991. Immunocytochemical localization of phosphatase inhibitor-1 in rat brain. J Comp Neurol 310: 170–188.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Ford C, Levay K, Gomes AV, Perera EM, Som T, et al. 2003. Characterization of tescalcin, a novel EF-hand protein with a single Ca2+-binding site: Metal-binding properties, localization in tissues and cells, and effect on calcineurin. Biochemistry 42: 14553–14565.

    Article  PubMed  CAS  Google Scholar 

  • Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, et al. 2000. Five members of a novel Ca(2+)-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem 275: 1247–1260.

    Article  PubMed  CAS  Google Scholar 

  • Hancq S, Salmon I, Brotchi J, De Witte O, Gabius HJ, et al. 2004. S100A5: A marker of recurrence in WHO grade I meningiomas. Neuropathol Appl Neurobiol 30: 178–187.

    Article  PubMed  CAS  Google Scholar 

  • Hata R, Masumura M, Akatsu H, Li F, Fujita H, et al. 2001. Up-regulation of calcineurin Abeta mRNA in the Alzheimer's disease brain: Assessment by cDNA microarray. Biochem Biophys Res Commun 284: 310–316.

    Article  PubMed  CAS  Google Scholar 

  • Haynes LP, Tepikin AV, Burgoyne RD. 2004. Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279: 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Heierhorst J, Mann RJ, Kemp BE. 1997. Interaction of the recombinant S100A1 protein with twitchin kinase, and comparison with other Ca2+-binding proteins. Eur J Biochem 249: 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Heierhorst J, Mitchelhill KI, Mann RJ, Tiganis T, Czernik AJ, et al. 1999. Synapsins as major neuronal Ca2+/S100A1-interacting proteins. Biochem J 344: 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Braun K. 1992. Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci 15: 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Braun K. 1995. Calcium regulation by calcium binding proteins in neurodegenerative disorders. Neuroscience. Landes RG, editor. Austin: Springer-Verlag.

    Google Scholar 

  • Heizmann CW, Cox JA. 1998. New perspectives on S100 proteins: A multifunctional Ca(2+)-, Zn(2+)-, and Cu(2+)-binding protein family. Biometals 11: 383–397.

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Fritz G, Schafer BW. 2002. S100 proteins: Structure, functions, and pathology. Frontiers Bioscience 7: d1356–d1368.

    Article  CAS  Google Scholar 

  • Heizmann CW, Krebs J, Moss SE, editors. 2004. Special issue on Calcium. Biochim Biophys Acta Mol Cell Res 1742: 1–206.

    Google Scholar 

  • Hernandez-Cruz A, Diaz-Munoz M, Gomez-Chavarin M, Canedo-Merino R, Protti DA, et al. 1995. Properties of the ryanodine-sensitive release channels that underlie caffeine-induced Ca2+ mobilization from intracellular stores in mammalian sympathetic neurons. Eur J Neurosci 7: 1684–1699.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Cruz A, Escobar AL, Jimenez N. 1997. Ca(2+)-induced Ca2+ release phenomena in mammalian sympathetic neurons are critically dependent on the rate of rise of trigger Ca2+. J Gen Physiol 109: 147–167.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker S. 2003. Neuronal calcium sensor-1: A multifunctional regulator of secretion. Biochem Soc Trans 31: 828–832.

    Article  PubMed  CAS  Google Scholar 

  • Hofer AM, Brown EM. 2003. Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4: 530–538.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, et al. 1999. RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell 97: 889–901.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann MA, Drury S, Hudson BI, Gleason MR, Qu W, et al. 2002. RAGE and arthritis: The G82S polymorphism amplifies the inflammatory response. Genes Immun 3: 123–135.

    Article  PubMed  CAS  Google Scholar 

  • Hori O, Brett J, Slattery T, Cao R, Zhang J, et al. 1995. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem 270: 25752–25761.

    Article  PubMed  CAS  Google Scholar 

  • Houdusse A, Cohen C. 1995. Target sequence recognition by the calmodulin superfamily: Implications from light chain binding to the regulatory domain of scallop myosin. Proc Natl Acad Sci USA 92: 10644–10647.

    Article  PubMed  CAS  Google Scholar 

  • Houdusse A, Cohen C. 1996. Structure of the regulatory domain of scallop myosin at 2 A resolution: Implications for regulation. Structure 4: 21–32.

    Article  PubMed  CAS  Google Scholar 

  • Hoyaux D, Boom A, Van den Bosch L, Belot N, Martin JJ, et al. 2002. S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. J Neuropathol Exp Neurol 61: 736–744.

    PubMed  CAS  Google Scholar 

  • Huttunen HJ, Fages C, Rauvala H. 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274: 19919–19924.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, et al. 2000. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275: 40096–40105.

    Article  PubMed  CAS  Google Scholar 

  • Ikeshima H, Yuasa S, Matsuo K, Kawamura K, Hata J, et al. 1993. Expression of three nonallelic genes coding calmodulin exhibits similar localization on the central nervous system of adult rats. J Neurosci Res 36: 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Ilari A, Johnson KA, Nastopoulos V, Verzili D, Zamparelli C, et al. 2002. The crystal structure of the sorcin calcium binding domain provides a model of Ca2+-dependent processes in the full-length protein. J Mol Biol 317: 447–458.

    Article  PubMed  CAS  Google Scholar 

  • Inman KG, Yang R, Rustandi RR, Miller KE, Baldisseri DM, et al. 2002. Solution NMR structure of S100B bound to the high-affinity target peptide TRTK-12. J Mol Biol 324: 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  • Ivanenkov VV, Jamieson GA Jr, Gruenstein E, Dimlich RV. 1995. Characterization of S-100b binding epitopes. Identification of a novel target, the actin capping protein, CapZ. J Biol Chem 270: 14651–14658.

    Article  PubMed  CAS  Google Scholar 

  • Ivings L, Pennington SR, Jenkins R, Weiss JL, Burgoyne RD. 2002. Identification of Ca2+-dependent binding partners for the neuronal calcium sensor protein neurocalcin delta: Interaction with actin, clathrin and tubulin. Biochem J 363: 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Jung YS, Kim KS, Kim KD, Lim JS, Kim JW, et al. 2001. Apoptosis-linked gene 2 binds to the death domain of Fas and dissociates from Fas during Fas-mediated apoptosis in Jurkat cells. Biochem Biophys Res Commun 288: 420–426.

    Article  PubMed  CAS  Google Scholar 

  • Junge HJ, Rhee JS, Jahn O, Varoqueaux F, Spiess J, et al. 2004. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118: 389–401.

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Choi KS, Kassam G, Fitzpatrick SL, Kwon M, et al. 1999. Role of annexin II tetramer in plasminogen activation. Trends Cardiovasc Med 9: 92–102.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Nakayama S, Kretsinger RH. 1998. Classification and evolution of EF-hand proteins. Biometals 11: 277–295.

    Article  PubMed  CAS  Google Scholar 

  • Kiewitz R, Acklin C, Schafer BW, Maco B, Uhrik B, et al. 2003. Ca2+-dependent interaction of S100A1 with the sarcoplasmic reticulum Ca2+-ATPase2a and phospholamban in the human heart. Biochem Biophys Res Commun 306: 550–557.

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ, Helfman DM. 2003. Characterization of the metastasis-associated protein, S100A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem 278: 30063–30073.

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RL, Balaban CD, Billingsley ML. 1987. Differential localization of calmodulin-dependent enzymes in rat brain: Evidence for selective expression of cyclic nucleotide phosphodiesterase in specific neurons. Proc Natl Acad Sci USA 84: 1118–1122.

    Article  PubMed  CAS  Google Scholar 

  • King MM, Huang CY, Chock PB, Nairn AC, Hemmings HC Jr, et al. 1984. Mammalian brain phosphoproteins as substrates for calcineurin. J Biol Chem 259: 8080–8083.

    PubMed  CAS  Google Scholar 

  • Kitaura Y, Watanabe M, Satoh H, Kawai T, Hitomi K, et al. 1999. Peflin, a novel member of the five-EF-hand-protein family, is similar to the apoptosis-linked gene 2 (ALG-2) protein but possesses nonapeptide repeats in the N-terminal hydrophobic region. Biochem Biophys Res Commun 263: 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Kitaura Y, Matsumoto S, Satoh H, Hitomi K, Maki M. 2001. Peflin and ALG-2, members of the penta-EF-hand protein family, form a heterodimer that dissociates in a Ca2+-dependent manner. J Biol Chem 276: 14053–14058.

    PubMed  CAS  Google Scholar 

  • Klee CB, Crouch TH, Krinks MH. 1979. Calcineurin: A calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 76: 6270–6273.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, et al. 1999. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, et al. 2003. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci USA 100: 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Kozlova EN, Lukanidin E. 1999. Metastasis-associated mts1 (S100A4) protein is selectively expressed in white matter astrocytes and is up-regulated after peripheral nerve or dorsal root injury. Glia 27: 249–258.

    Article  PubMed  CAS  Google Scholar 

  • Krebs J, Saremaslani P, Caduff R. 2002. ALG-2: A Ca2+-binding modulator protein involved in cell proliferation and in cell death. Biochim Biophys Acta 1600: 68–73.

    PubMed  CAS  Google Scholar 

  • Kretsinger RH, Nockolds CE. 1973. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248: 3313–3326.

    PubMed  CAS  Google Scholar 

  • Kuno T, Mukai H, Ito A, Chang CD, Kishima K, et al. 1992. Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J Neurochem 58: 1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Kwon M, Mac Leod TJ, Zhang Y, Waisman DM. 2005. S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Front Biosci 10: 300–325.

    Article  PubMed  CAS  Google Scholar 

  • la Cour JM, Mollerup J, Winding P, Tarabykina S, Sehested M, et al. 2003. Up-regulation of ALG-2 in hepatomas and lung cancer tissue. Am J Pathol 163: 81–89.

    PubMed  CAS  Google Scholar 

  • Landar A, Caddell G, Chessher J, Zimmer DB. 1996. Identification of an S100A1/S100B target protein: Phosphoglucomutase. Cell Calcium 20: 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Landriscina M, Bagala C, Mandinova A, Soldi R, Micucci I, et al. 2001. Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem 276: 25549–25557.

    Article  PubMed  CAS  Google Scholar 

  • Lara DR, Gama CS, Belmonte-de-Abreu P, Portela LV, Goncalves CA, et al. 2001. Increased serum S100B protein in schizophrenia: A study in medication-free patients. J Psychiatr Res 35: 11–14.

    Article  PubMed  CAS  Google Scholar 

  • Laube G, Seidenbecher CI, Richter K, Dieterich DC, Hoffmann B, et al. 2002. The neuron-specific Ca2+-binding protein caldendrin: Gene structure, splice isoforms, and expression in the rat central nervous system. Mol Cell Neurosci 19: 459–475.

    Article  PubMed  CAS  Google Scholar 

  • Lecleic E, Fritz G, Weibel H, Heizmann CW, Galichet A. 2007. S100B amd S100A6 differentially modulate cell survival through their interaction with distinct RAGE immunoglobulin domains. J Biol Chem in press.

    Google Scholar 

  • Lee A, Westenbroek RE, Haeseleer F, Palczewski K, Scheuer T, et al. 2002. Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. Nat Neurosci 5: 210–217.

    Article  PubMed  CAS  Google Scholar 

  • Lian Q, Ladner CJ, Magnuson D, Lee JM. 2001. Selective changes of calcineurin (protein phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp Neurol 167: 158–165.

    Article  PubMed  CAS  Google Scholar 

  • Lin GD, Chattopadhyay D, Maki M, Wang KK, Carson M, et al. 1997. Crystal structure of calcium bound domain VI of calpain at 1.9 A resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat Struct Biol 4: 539–547.

    Article  PubMed  CAS  Google Scholar 

  • Lin LH, Van Eldik LJ, Osheroff N, Norden JJ. 1994. Inhibition of protein kinase C- and casein kinase II-mediated phosphorylation of GAP-43 by S100 beta. Brain Res Mol Brain Res 25: 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Maki M, Narayana SV, Hitomi K. 1997. A growing family of the Ca2+-binding proteins with five EF-hand motifs. Biochem J 328: 718–720.

    PubMed  CAS  Google Scholar 

  • Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H. 2002. Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim Biophys Acta 1600: 51–60.

    PubMed  CAS  Google Scholar 

  • Marenholz I, Heizmann CW. 2004. S100A16, a ubiquitously expressed EF-hand protein which is up-regulated in tumors. Biochem Biophys Res Commun 313: 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Marenholz I, Heizmann CW, Fritz G. 2004. S100 proteins in mouse and man: From evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322: 1111–1122.

    Article  PubMed  CAS  Google Scholar 

  • Martinez J, Moeller I, Erdjument-Bromage H, Tempst P, Lauring B. 2003. Parkinson's disease-associated alpha-synuclein is a calmodulin substrate. J Biol Chem 278: 17379–17387.

    Article  PubMed  CAS  Google Scholar 

  • Mashima H, Ueda N, Ohno H, Suzuki J, Ohnishi H, et al. 2003. A novel mitochondrial Ca2+-dependent solute carrier in the liver identified by mRNA differential display. J Biol Chem 278: 9520–9527.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. 2004. Structural basis of long-term potentiation in single dendritic spines. Nature 429: 761–766.

    Article  PubMed  CAS  Google Scholar 

  • McClintock KA, Van Eldik LJ, Shaw GS. 2002. The C-terminus and linker region of S100B exert dual control on protein-protein interactions with TRTK-12. Biochemistry 41: 5421–5428.

    Article  PubMed  CAS  Google Scholar 

  • McFerran BW, Weiss JL, Burgoyne RD. 1999. Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction. J Biol Chem 274: 30258–30265.

    Article  PubMed  CAS  Google Scholar 

  • Mellgren RL, Rozanov CB. 1990. Calpain II-dependent solubilization of a nuclear protein kinase at micromolar calcium concentrations. Biochem Biophys Res Commun 168: 589–595.

    Article  PubMed  CAS  Google Scholar 

  • Mercer EA, Korhonen L, Skoglosa Y, Olsson PA, Kukkonen JP, et al. 2000. NAIP interacts with hippocalcin and protects neurons against calcium-induced cell death through caspase-3-dependent and -independent pathways. EMBO J 19: 3597–3607.

    Article  PubMed  CAS  Google Scholar 

  • Meyers MB, Biedler JL. 1981. Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem Biophys Res Commun 99: 228–235.

    Article  PubMed  CAS  Google Scholar 

  • Michetti M, Salamino F, Minafra R, Melloni E, Pontremoli S. 1997. Calcium-binding properties of human erythrocyte calpain. Biochem J 325: 721–726.

    PubMed  CAS  Google Scholar 

  • Mikkelsen SE, Novitskaya V, Kriajevska M, Berezin V, Bock E, et al. 2001. S100A12 protein is a strong inducer of neurite outgrowth from primary hippocampal neurons. J Neurochem 79: 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Millward TA, Heizmann CW, Schäfer BW, Hemmings BA. 1998. Calcium regulation of Ndr protein kinase mediated by S100 calcium binary protein EMBO J 17: 5913–5922.

    Article  PubMed  CAS  Google Scholar 

  • Missotten M, Nichols A, Rieger K, Sadoul R. 1999. Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein. Cell Death Differ 6: 124–129.

    Article  PubMed  CAS  Google Scholar 

  • Mito T, Becker LE. 1993. Developmental changes of S-100 protein and glial fibrillary acidic protein in the brain in Down syndrome. Exp Neurol 120: 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Moore BW. 1965. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19: 739–744.

    Article  PubMed  CAS  Google Scholar 

  • Morohashi Y, Hatano N, Ohya S, Takikawa R, Watabiki T, et al. 2002. Molecular cloning and characterization of CALP/KChIP4, a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv4. J Biol Chem 277: 14965–14975.

    Article  PubMed  CAS  Google Scholar 

  • Moroz OV, Dodson GG, Wilson KS, Lukanidin E, Bronstein IB. 2003. Multiple structural states of S100A12: A key to its functional diversity. Microsc Res Tech 60: 581–592.

    Article  PubMed  CAS  Google Scholar 

  • Most P, Boerries M, Eicher C, Schweda C, Volkers M, et al. 2005. Distinct subcellular location of the Ca2+-binding protein S100A1 differentially modulates Ca2+-cycling in ventricular rat cardiomyocytes. J Cell Sci 118: 421–431.

    Article  PubMed  CAS  Google Scholar 

  • Mrak RE, Sheng JG, Griffin WS. 1996. Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer's disease. J Neuropathol Exp Neurol 55: 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Nelson MR, Chazin WJ. 1998. Structures of EF-hand Ca(2+)-binding proteins: Diversity in the organization, packing and response to Ca2+ binding. Biometals 11: 297–318.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama H, Knopfel T, Endo S, Itohara S. 2002. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci USA 99: 4037–4042.

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA. 2003. The calpains in aging and aging-related diseases. Ageing Res Rev 2: 407–418.

    Article  PubMed  CAS  Google Scholar 

  • Nojima H. 1989. Structural organization of multiple rat calmodulin genes. J Mol Biol 208: 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Novitskaya V, Grigorian M, Kriajevska M, Tarabykina S, Bronstein I, et al. 2000. Oligomeric forms of the metastasis-related Mts1 (S100A4) protein stimulate neuronal differentiation in cultures of rat hippocampal neurons. J Biol Chem 275: 41278–41286.

    Article  PubMed  CAS  Google Scholar 

  • Nowotny M, Spiechowicz M, Jastrzebska B, Filipek A, Kitagawa K, et al. 2003. Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins. J Biol Chem 278: 26923–26928.

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Hatakeyama T, Itoh H, Tokuta N, Tokumitsu H, et al. 2004. S100A1 is a novel molecular chaperone and a member of the Hsp70/Hsp90 multichaperone complex. J Biol Chem 279: 4221–4233.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki K, Obata NH, Inoue S, Hidaka H. 1995. S100 beta is a target protein of neurocalcin delta, an abundant isoform in glial cells. Biochem J 306: 551–555.

    PubMed  CAS  Google Scholar 

  • Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, et al. 2002. Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417: 653–656.

    Article  PubMed  CAS  Google Scholar 

  • Onyike CU, Lin AH, Abrams TW. 1998. Persistence of the interaction of calmodulin with adenylyl cyclase: Implications for integration of transient calcium stimuli. J Neurochem 71: 1298–1306.

    PubMed  CAS  Google Scholar 

  • Ostendoip T, Lecleic E, Galichet A, Demling N, Weigle B, Heizmann CW. 2007. The crystal structure of human Efhand protein S100B reveals a multimeric organization: Implications on RAGE signaling. EMBO J 26: 3868–.

    Google Scholar 

  • Ouimet CC, Langley-Gullion KC, Greengard P. 1998. Quantitative immunocytochemistry of DARPP-32-expressing neurons in the rat caudatoputamen. Brain Res 808: 8–12.

    Article  PubMed  CAS  Google Scholar 

  • Pack-Chung E, Meyers MB, Pettingell WP, Moir RD, Brownawell AM, et al. 2000. Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor. J Biol Chem 275: 14440–14445.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Sokal I, Baehr W. 2004. Guanylate cyclase-activating proteins: Structure, function, and diversity. Biochem Biophys Res Commun 322: 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Palfi A, Kortvely E, Fekete E, Kovacs B, Varszegi S, et al. 2002. Differential calmodulin gene expression in the rodent brain. Life Sci 70: 2829–2855.

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, et al. 2001. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J 20: 5060–5069.

    Article  PubMed  CAS  Google Scholar 

  • Pang T, Wakabayashi S, Shigekawa M. 2002. Expression of calcineurin B homologous protein 2 protects serum deprivation-induced cell death by serum-independent activation of Na+/H+ exchanger. J Biol Chem 277: 43771–43777.

    Article  PubMed  CAS  Google Scholar 

  • Parker C, Lakshmi MS, Piura B, Sherbet GV. 1994. Metastasis-associated mts1 gene expression correlates with increased p53 detection in the B16 murine melanoma. DNA Cell Biol 13: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Pickel VM, Clarke CL, Meyers MB. 1997. Ultrastructural localization of sorcin, a 22 kDa calcium binding protein, in the rat caudate-putamen nucleus: Association with ryanodine receptors and intracellular calcium release. J Comp Neurol 386: 625–634.

    Article  PubMed  CAS  Google Scholar 

  • Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, et al. 1993. Frequenin–a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11: 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Zozulya S, Niemi GA, Flaherty KM, Brolley D, et al. 1992. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision. Proc Natl Acad Sci USA 89: 5705–5709.

    Article  PubMed  CAS  Google Scholar 

  • Ridinger K, Schafer BW, Durussel I, Cox JA, Heizmann CW. 2000. S100A13. Biochemical characterization and subcellular localization in different cell lines. J Biol Chem 275: 8686–8694.

    Article  PubMed  CAS  Google Scholar 

  • Rong LL, Trojaborg W, Qu W, Kostov K, Yan SD, et al. 2004. Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J 18: 1812–1817.

    Article  PubMed  CAS  Google Scholar 

  • Rothermundt M, Peters M, Prehn JH, Arolt V. 2003. S100B in brain damage and neurodegeneration. Microsc Res Tech 60: 614–632.

    Article  PubMed  CAS  Google Scholar 

  • Rusnak F, Mertz P. 2000. Calcineurin: Form and function. Physiol Rev 80: 1483–1521.

    PubMed  CAS  Google Scholar 

  • Sandelin M, Zabihi S, Liu L, Wicher G, Kozlova EN. 2004. Metastasis-associated S100A4 (Mts1) protein is expressed in subpopulations of sensory and autonomic neurons and in Schwann cells of the adult rat. J Comp Neurol 473: 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Kawashima S. 2001. Calpain function in the modulation of signal transduction molecules. Biol Chem 382: 743–751.

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Shibata H, Nakano Y, Kitaura Y, Maki M. 2002. ALG-2 interacts with the amino-terminal domain of annexin XI in a Ca(2+)-dependent manner. Biochem Biophys Res Commun 291: 1166–1172.

    Article  PubMed  CAS  Google Scholar 

  • Schafer BW, Fritschy JM, Murmann P, Troxler H, Durussel I, et al. 2000. Brain S100A5 is a novel calcium-, zinc-, and copper ion-binding protein of the EF-hand superfamily. J Biol Chem 275: 30623–30630.

    Article  PubMed  CAS  Google Scholar 

  • Schlueter C, Hauke S, Flohr AM, Rogalla P, Bullerdiek J. 2003. Tissue-specific expression patterns of the RAGE receptor and its soluble forms – a result of regulated alternative splicing? Biochim Biophys Acta 1630: 1–6.

    PubMed  CAS  Google Scholar 

  • Schmidt AM, Hasu M, Popov D, Zhang JH, Chen J, et al. 1994. Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci USA 91: 8807–8811.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AM, Yan SD, Wautier JL, Stern D. 1999. Activation of receptor for advanced glycation end products: A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84: 489–497.

    PubMed  CAS  Google Scholar 

  • Schmidt AM, Yan SD, Yan SF, Stern DM. 2001. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108: 949–955.

    PubMed  CAS  Google Scholar 

  • Schnurra I, Bernstein HG, Riederer P, Braunewell KH. 2001. The neuronal calcium sensor protein VILIP-1 is associated with amyloid plaques and extracellular tangles in Alzheimer's disease and promotes cell death and tau phosphorylation in vitro: A link between calcium sensors and Alzheimer's disease? Neurobiol Dis 8: 900–909.

    Article  PubMed  CAS  Google Scholar 

  • Schroeter ML, Abdul-Khaliq H, Diefenbacher A, Blasig IE. 2002. S100B is increased in mood disorders and may be reduced by antidepressive treatment. Neuroreport 13: 1675–1678.

    Article  PubMed  CAS  Google Scholar 

  • Schumacher AM, Schavocky JP, Velentza AV, Mirzoeva S, Watterson DM. 2004. A calmodulin-regulated protein kinase linked to neuron survival is a substrate for the calmodulin-regulated death-associated protein kinase. Biochemistry 43: 8116–8124.

    Article  PubMed  CAS  Google Scholar 

  • Seidenbecher CI, Langnaese K, Sanmarti-Vila L, Boeckers TM, Smalla KH, et al. 1998. Caldendrin, a novel neuronal calcium-binding protein confined to the somato-dendritic compartment. J Biol Chem 273: 21324–21331.

    Article  PubMed  CAS  Google Scholar 

  • Sheng JG, Mrak RE, Griffin WS. 1994. S100 beta protein expression in Alzheimer's disease: Potential role in the pathogenesis of neuritic plaques. J Neurosci Res 39: 398–404.

    Article  PubMed  CAS  Google Scholar 

  • Skripnikova EV, Gusev NB. 1989. Interaction of smooth muscle caldesmon with S-100 protein. FEBS Lett 257: 380–382.

    Article  PubMed  CAS  Google Scholar 

  • Sola C, Tusell JM, Serratosa J. 1996. Comparative study of the pattern of expression of calmodulin messenger RNAs in the mouse brain. Neuroscience 75: 245–256.

    Article  PubMed  CAS  Google Scholar 

  • Sorci G, Agneletti AL, Bianchi R, Donato R. 1998. Association of S100B with intermediate filaments and microtubules in glial cells. Biochim Biophys Acta 1448: 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Suzuki K. 2001. The structure of calpain. J Biochem (Tokyo) 129: 653–664.

    CAS  Google Scholar 

  • Spilker C, Richter K, Smalla KH, Manahan-Vaughan D, Gundelfinger ED, et al. 2000. The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association. Neuroscience 96: 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Spilker C, Gundelfinger ED, Braunewell KH. 2002. Evidence for different functional properties of the neuronal calcium sensor proteins VILIP-1 and VILIP-3: From subcellular localization to cellular function. Biochim Biophys Acta 1600: 118–127.

    PubMed  CAS  Google Scholar 

  • Spilker C, Braunewell KH. 2003. Calcium-myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons. Mol Cell Neurosci 24: 766–778.

    Article  PubMed  CAS  Google Scholar 

  • Stabler SM, Ostrowski LL, Janicki SM, Monteiro MJ. 1999. A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein. J Cell Biol 145: 1277–1292.

    Article  PubMed  CAS  Google Scholar 

  • Stemmer PM, Klee CB. 1994. Dual calcium ion regulation of calcineurin by calmodulin and calcineurin B. Biochemistry 33: 6859–6866.

    Article  PubMed  CAS  Google Scholar 

  • Stewart AA, Ingebritsen TS, Manalan A, Klee CB, Cohen P. 1982. Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: Probable identity with calcineurin (CaM-BP80). FEBS Lett 137: 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Strahl T, Grafelmann B, Dannenberg J, Thorner J, Pongs O. 2003. Conservation of regulatory function in calcium-binding proteins: Human frequenin (neuronal calcium sensor-1) associates productively with yeast phosphatidylinositol 4-kinase isoform, Pik1. J Biol Chem 278: 49589–49599.

    Article  PubMed  CAS  Google Scholar 

  • Sudo T, Hidaka H. 1998. Regulation of calcyclin (S100A6) binding by alternative splicing in the N-terminal regulatory domain of annexin XI isoforms. J Biol Chem 273: 6351–6357.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Sorimachi H. 1998. A novel aspect of calpain activation. FEBS Lett 433: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Takaishi T, Saito N, Kuno T, Tanaka C. 1991. Differential distribution of the mRNA encoding two isoforms of the catalytic subunit of calcineurin in the rat brain. Biochem Biophys Res Commun 174: 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Takenaga K, Nakamura Y, Sakiyama S, Hasegawa Y, Sato K, et al. 1994. Binding of pEL98 protein, an S100-related calcium-binding protein, to nonmuscle tropomyosin. J Cell Biol 124: 757–768.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M. 1995. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376: 444–447.

    Article  PubMed  CAS  Google Scholar 

  • Tarabykina S, Moller AL, Durussel I, Cox J, Berchtold MW. 2000. Two forms of the apoptosis-linked protein ALG-2 with different Ca(2+) affinities and target recognition. J Biol Chem 275: 10514–10518.

    Article  PubMed  CAS  Google Scholar 

  • Tarabykina S, Mollerup J, Winding P, Berchtold MW. 2004. ALG-2, a multifunctional calcium binding protein? Front Biosci 9: 1817–1832.

    Article  PubMed  CAS  Google Scholar 

  • Teahan CG, Totty NF, Segal AW. 1992. Isolation and characterization of grancalcin, a novel 28 kDa EF-hand calcium-binding protein from human neutrophils. Biochem J 286 (Pt 2): 549–554.

    PubMed  CAS  Google Scholar 

  • Tiu SC, Chan WY, Heizmann CW, Schafer BW, Shu SY, et al. 2000. Differential expression of S100B and S100A6(1) in the human fetal and aged cerebral cortex. Brain Res Dev Brain Res 119: 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Treves S, Scutari E, Robert M, Groh S, Ottolia M, et al. 1997. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 36: 11496–11503.

    Article  PubMed  CAS  Google Scholar 

  • Valentine KG, Mesleh MF, Opella SJ, Ikura M, Ames JB. 2003. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers. Biochemistry 42: 6333–6340.

    Article  PubMed  CAS  Google Scholar 

  • van Dalen JJ, Gerendasy DD, de Graan PN, Schrama LH, Gruol DL. 2003. Calcium dynamics are altered in cortical neurons lacking the calmodulin-binding protein RC3. Eur J Neurosci 18: 13–22.

    Article  PubMed  Google Scholar 

  • de Graaf SFJ, van Hoenderop JGJ, Gikka D, Lamers D, Prenen J, et al. 2003. Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO J 22: 1478–1487.

    Article  Google Scholar 

  • Van Eldik LJ, Christie-Pope B, Bolin LM, Shooter EM, Whetsell WO Jr. 1991. Neurotrophic activity of S-100 beta in cultures of dorsal root ganglia from embryonic chick and fetal rat. Brain Res 542: 280–285.

    Article  PubMed  CAS  Google Scholar 

  • Van Eldik LJ, Watterson DM. 1998. Calmodulin and signal transduction. Orlando: Academic Press.

    Google Scholar 

  • Van Eldik LJ, Wainwright MS. 2003. The Janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restor Neurol Neurosci 21: 97–108.

    PubMed  CAS  Google Scholar 

  • Veeranna, Kaji T, Boland B, Odrljin T, Mohan P, et al. 2004. Calpain mediates calcium-induced activation of the erk1,2 MAPK pathway and cytoskeletal phosphorylation in neurons: Relevance to Alzheimer's disease. Am J Pathol 165: 795–805.

    PubMed  CAS  Google Scholar 

  • Vito P, Lacana E, D'Adamio L. 1996. Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science 271: 521–525.

    Article  PubMed  CAS  Google Scholar 

  • Vito P, Pellegrini L, Guiet C, D'Adamio L. 1999. Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J Biol Chem 274: 1533–1540.

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Desai R. 1976. A brain protein and its effect on the Ca2+-and protein modulator-activated cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 72: 926–932.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Ando Y, Tokumitsu H, Hidaka H. 1993. Binding site of annexin XI on the calcyclin molecule. Biochem Biophys Res Commun 196: 1376–1382.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Usuda N, Tsugane S, Kobayashi R, Hidaka H. 1992. Calvasculin, an encoded protein from mRNA termed pEL-98, 18A2, 42A, or p9Ka, is secreted by smooth muscle cells in culture and exhibits Ca(2+)-dependent binding to 36-kDa microfibril-associated glycoprotein. J Biol Chem 267: 17136–17140.

    PubMed  CAS  Google Scholar 

  • Weber FE, Minestrini G, Dyer JH, Werder M, Boffelli D, et al. 1997. Molecular cloning of a peroxisomal Ca2+-dependent member of the mitochondrial carrier superfamily. Proc Natl Acad Sci USA 94: 8509–8514.

    Article  PubMed  CAS  Google Scholar 

  • Winocur G, Roder J, Lobaugh N. 2001. Learning and memory in S100-beta transgenic mice: An analysis of impaired and preserved function. Neurobiol Learn Mem 75: 230–243.

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Angus CW, Yao XL, Logun C, Shelhamer JH. 1997. p11, a unique member of the S100 family of calcium-binding proteins, interacts with and inhibits the activity of the 85-kDa cytosolic phospholipase A2. J Biol Chem 272: 17145–17153.

    Article  PubMed  CAS  Google Scholar 

  • Wu YQ, Lin X, Liu CM, Jamrich M, Shaffer LG. 2001. Identification of a human brain-specific gene, calneuron 1, a new member of the calmodulin superfamily. Mol Genet Matab 72: 343–350.

    Article  CAS  Google Scholar 

  • Xie X, Dwyer MD, Swenson L, Parker MH, Botfield MC. 2001. Crystal structure of calcium-free human sorcin: A member of the penta-EF-hand protein family. Protein Sci 10: 2419–2425.

    PubMed  CAS  Google Scholar 

  • Xiong Z, O'Hanlon D, Becker LE, Roder J, Mac Donald JF, et al. 2000. Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res 257: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K, Goto K, Kuo CH, Kondo H, Miki N. 1990. Visinin: A novel calcium binding protein expressed in retinal cone cells. Neuron 4: 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, et al. 2001. Titin-actin interaction in mouse myocardium: Passive tension modulation and its regulation by calcium/S100A1. Biophys J 81: 2297–2313.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita N, Ilg EC, Schafer BW, Heizmann CW, Kosaka T. 1999. Distribution of a specific calcium-binding protein of the S100 protein family, S100A6 (calcyclin), in subpopulations of neurons and glial cells of the adult rat nervous system. J Comp Neurol 404: 235–257.

    Article  PubMed  CAS  Google Scholar 

  • Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, et al. 1994. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269: 9889–9897.

    PubMed  CAS  Google Scholar 

  • Yang J, McBride S, Mak DO, Vardi N, Palczewski K, et al. 2002. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc Natl Acad Sci USA 99: 7711–7716.

    Article  PubMed  CAS  Google Scholar 

  • Zeng FY, Gerke V, Gabius HJ. 1993. Identification of annexin II, annexin VI and glyceraldehyde-3-phosphate dehydrogenase as calcyclin-binding proteins in bovine heart. Int J Biochem 25: 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, et al. 2001. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107: 617–629.

    Article  PubMed  CAS  Google Scholar 

  • Zhang KH, Han S, Lu PH, Xu XM. 2004. Upregulation of S100A4 after spinal cord transection in adult rats. Acta Pharmacol Sin 25: 1007–1012.

    PubMed  CAS  Google Scholar 

  • Ziegler DR, Innocente CE, Leal RB, Rodnight R, Goncalves CA. 1998. The S100B protein inhibits phosphorylation of GFAP and vimentin in a cytoskeletal fraction from immature rat hippocampus. Neurochem Res 23: 1259–1263.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Van Eldik LJ. 1986. Identification of a molecular target for the calcium-modulated protein S100. Fructose-1,6-bisphosphate aldolase. J Biol Chem 261: 11424–11428.

    PubMed  CAS  Google Scholar 

  • Zimmer DB. 1991. Examination of the calcium-modulated protein S100 alpha and its target proteins in adult and developing skeletal muscle. Cell Motil Cytoskeleton 20: 325–337.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Dubuisson JG. 1993. Identification of an S100 target protein: Glycogen phosphorylase. Cell Calcium 14: 323–332.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Landar A. 1995. Analysis of S100A1 expression during skeletal muscle and neuronal cell differentiation. J Neurochem 64: 2727–2736.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer DB, Wright Sadosky P, Weber DJ. 2003. Molecular mechanisms of S100-target protein interactions. Microsc Res Tech 60: 552–559.

    Article  PubMed  CAS  Google Scholar 

  • Zobiack N, Rescher U, Ludwig C, Zeuschner D, Gerke V. 2003. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol Biol Cell 14: 4896–4908.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NCCR on Neural Plasticity and Repair and the Transregio Sonderforschungsbereich TR SFB 11 Konstanz/Zürich.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Leclerc, E., Sturchler, E., Heizmann, C.W. (2009). Calcium Regulation by EF-hand Protein in the Brain. In: Lajtha, A., Mikoshiba, K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30370-3_27

Download citation

Publish with us

Policies and ethics