Skip to main content

Advertisement

Log in

Calpain inhibitors

A treatment for alzheimer’s disease

  • Lead Compound Discovery And Optimization
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Activation of the calpain system might contribute to the impairment of synaptic transmission in Alzheimer’s disease (AD) (Liu et al., 1999; Rapoport, 1999; Selkoe, 1994). Calpains regulate the function of many proteins by limited proteolysis and initiate the complete degradation of other proteins. In particular, they modulate processes that govern the function and metabolism of proteins key to the pathogenesis of AD, including tau and amyloid precursor protein (APP). (Xie and Johnson, 1998; Wang, 2000). We have found that overexpression of APP(K670M:N671L) and PS1(M146L) proteins in hippocampal cultures derived from transgenic mice causes an increase in the frequency of spontaneous release of neurotransmitter. We have also found that calpain immunoreactive clusters are co-localized with immunoreactivity for the vesicle-associated presynaptic marker, synaptophysin. Moreover, application of calpain inhibitor reduces the frequency of spontaneous release of neurotransmitter. Therefore, we have hypothesized that calpains might contribute to the increase in transmitter release. Based on this hypothesis, we propose to test whether it is possible to restore normal synaptic transmission between cells derived from the transgenic model of AD by using calpain inhibitors. The transgenic mouse model also shows spatial learning impairment, a phenomenon that is thought to be associated with plastic changes at synaptic level. Therefore, we will also test whether we can rescue the learning impairment through a treatment with calpain inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arancio O., Kandel E. R., and Hawkins R. D. (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 3′, 5′-cyclic GMP in cultured hippocampal neurons. Nature 376, 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Arancio O., Kiebler M., Lee C. J., Lev-Ram V., Tsien R. Y., Kandel E. R., and Hawkins R. D. (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87, 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  • Banno Y., Nakashima S., Hachiya T., and Nozawa Y. (1995) Endogenous cleavage of phospholipase C-beta 3 by agonist-induced activation of calpain in human platelets. J. Biol. Chem. 270, 4318–4324.

    Article  PubMed  CAS  Google Scholar 

  • Carillo S., Pariat M., Steff A. M., Roux P., Etienne-Julan M., Lorca T., and Piechaczyk M. (1994) Differential sensitivity of FOS and JUN family members to calpains. Oncogene 9, 1679–1689.

    PubMed  CAS  Google Scholar 

  • Duff K., Eckman C., Zehr C., Yu X., Prada C. M., Pereztur J., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  • Gandy S., Czernik A. J., and Greengard P. (1998) Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc. Natl. Acad. Sci. USA 85, 6218–6221.

    Article  Google Scholar 

  • Grynspan F., Griffin W. R., Cataldo A., Katayama S., and Nixon R. A. (1997) Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res. 763, 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Holcomb L., Gordon M. N., McGowan E., Yu X., Benkovic S., Jantzen P., et al. (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4, 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., et al. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Johnson G. V., Litersky J. M., and Jope R. S. (1991) Degradation of microtubule-associated protein 2 and brain spectrin by calpain: a comparative study. J. Neurochem. 56, 1630–1638.

    Article  PubMed  CAS  Google Scholar 

  • Katz B. (1966) Quantal nature of chemical transmission, in Nerve, Muscle and Synapse (Wald G., ed.), McGraw-Hill, New York, pp. 129–134.

    Google Scholar 

  • Lee M. S., Kwon Y. T., Li M., Peng J., Friedlander R. M., and Tsai L. H. (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Lin Y. C., Brown K., and Siebenlist U. (1995) Activation of NF-kappa B requires proteolysis of the inhibitor I kappa B-alpha: signal-induced phosphorylation of I kappa B-alpha alone does not release active NF-kappa B. Proc. Natl. Acad. Sci. USA 92, 552–556.

    Article  PubMed  CAS  Google Scholar 

  • Liu X., Passant U., Risberg J., Warkentin S., and Brun A. (1999) Synapse density related to cerebral blood flow and symptomatology in frontal lobe degeneration and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 1, 64–70.

    Article  Google Scholar 

  • Masliah E. and Terry R. D. (1993) Role of synaptic pathology in the mechanisms of dementia in Alzheimer’s disease. Clin. Neurosci. 1, 192–198.

    Google Scholar 

  • Nixon R. A. (1986) Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons. J. Neurosci. 6, 1264–1271.

    PubMed  CAS  Google Scholar 

  • Nixon R. A (2000) A “protease activation cascade” in the pathogenesis of Alzheimer’s disease. Ann. NY Acad. Sci. 924, 117–131.

    Article  PubMed  CAS  Google Scholar 

  • Nixon R. A., Saito K. I., Grynspan F., Griffin W. R., Katayama S., Honda T., et al. (1994) Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann. NY Acad. Sci. 747, 77–91.

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter L. S., Siman R., Gall C., Seubert P., Baudry M., and Lynch G. (1988) The ultrastructural localization of calcium-activated protease “calpain” in rat brain. Synapse 2, 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Pontremoli S., Melloni E., Michetti M., Sparatore B., Salamino F., Sacco O., and Horecker B. L. (1987) Phosphorylation and proteolytic modification of specific cytoskeletal proteins in human neutrophils stimulated by phorbol 12-myristate 13-acetate. Proc. Natl. Acad. Sci. USA 84, 3604–3608.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport S. I. (1999) In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 249, 46–55.

    Article  PubMed  Google Scholar 

  • Saito K., Elce J. S., Hamos J. E., and Nixon R. A. (1993) Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc. Natl. Acad. Sci. USA 90, 2628–2632.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1994) Normal and abnormal biology of the beta-amyloid precursor protein. Annu. Rev. Neurosci. 17, 489–517.

    Article  PubMed  CAS  Google Scholar 

  • Siman R., Baudry M., and Lynch G. (1984) Brain fodrin: substrate for calpain I, an endogenous calcium-activated protease. Proc. Natl. Acad. Sci. USA 81, 3572–3576.

    Article  PubMed  CAS  Google Scholar 

  • Wang K. K. (2000) Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26.

    Article  PubMed  Google Scholar 

  • Wang K. K. and Yuen P. W. (1997) Development and therapeutic potential of calpain inhibitors. Adv. Pharmacol. 37, 117–152.

    Article  PubMed  CAS  Google Scholar 

  • Xie H. Q. and Johnson G. V. (1998) Calcineurin inhibition prevents calpain-mediated proteolysis of tau in differentiated PC12 cells. J. Neurosci. Res. 53, 153–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ottavio Arancio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Rosa, G., Odrlijn, T., Nixon, R.A. et al. Calpain inhibitors. J Mol Neurosci 19, 135–141 (2002). https://doi.org/10.1007/s12031-002-0024-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-002-0024-4

Index Entries

Navigation