Skip to main content

Ecology of Aerobic Methanotrophs and their Role in Methane Cycling

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Aerobic methane-oxidizing bacteria (methanotrophs) are widely distributed in the environment and play a key role in the cycling of the potent greenhouse gas methane. They oxidize much of the methane produced by the anaerobic metabolism of methanogenic archaea before it escapes to the atmosphere, thereby mitigating the effects of global warming. Methanotrophs have been isolated from many different environments, including freshwater and marine environments, soils, sediments, acidic peatlands, rice paddies, landfill, alkaline soda lakes, hot springs, cold environments, and even from highly acidic, thermophilic environments. Molecular ecological studies indicate that there are still many methanotrophs present in the environment that have not yet been cultivated in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, et al. (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69: 6875–6887.

    Article  PubMed  CAS  Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67: 4009–4016.

    Article  PubMed  CAS  Google Scholar 

  • Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. Strain SC2. Proc Natl Acad Sci USA 105: 10203–10208.

    Article  PubMed  CAS  Google Scholar 

  • Blake DR, Rowland FS (1988) Continuing worldwide increase in tropospheric methane, 1978–1987. Science 239: 1129–1131.

    Article  PubMed  CAS  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47: 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Bodrossy L, Holmes EM, Holmes, AJ, Kovacs KL, Murrell JC (1997) Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch Microbiol 168: 493–503.

    Article  PubMed  CAS  Google Scholar 

  • Bodrossy L, Kovacs KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidizing γ-proteobacterium. FEMS Microbiol Lett 170: 335–341.

    CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch, A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5: 566–582.

    Article  PubMed  CAS  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143: 1451–1459.

    Article  PubMed  CAS  Google Scholar 

  • Bull ID, Parekh NR, Hall GH, Ineson P, Evershed RP (2000) Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405: 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Dumont MG, Neufeld JD, Bodrossy L, Stralis-Pavese N, McNamara NP, Ostle N, Briones MJI, Murrell JC (2008b) Revealing the uncultivated majority: Combining stable isotope probing, multiple displacement amplification and metagenomic analysis of uncultivated Methylocystis in acidic peatlands. Environ Microbiol 10: 2609–2622.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Murrell JC (2008a) DNA Stable-isotope probing: protocols and recent advances. In Methods in Molecular Biology – Gene Probes. M Aquino de Muro and R Rapley (eds.). Totowa, NJ: Humana Press.

    Google Scholar 

  • Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4: 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Dedysh SN (2002) Methanotrophic bacteria of acid Sphagnum bogs. Microbiol 71: 741–754.

    Article  CAS  Google Scholar 

  • Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN, Chidthaisong A, et al. (2007) Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 57: 472–479.

    Article  PubMed  CAS  Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53: 1231–1239.

    Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Eller G, Frenzel, P (2001) Changes in activity and community structure of methane oxidising bacteria over the growth period of rice. Appl Environ Microbiol 67: 2395–2403.

    Article  PubMed  CAS  Google Scholar 

  • Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag 23: 609–619.

    Article  PubMed  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439–471.

    PubMed  CAS  Google Scholar 

  • Hashsham SA, Gulari E, Tiedje JM (2007) Microfluidic systems being adapted for microbial, molecular biological analyses. Microbe 2: 531–536.

    Google Scholar 

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. Nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J System Evol Microbiol 55: 1817–1826.

    Article  CAS  Google Scholar 

  • Hoffmann T, Horz HP, Kemnitz D, Conrad R (2002) Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and The Philippines. Syst Appl Microbiol 25: 267–274.

    Google Scholar 

  • JT, Houghton Y, Ding DJ, Griggs M, Noguer PJ, van der Linden D eds Xiaosu (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, et al. (2007) Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridisation for single cell analysis of identity and function. Environ Microbiol 9: 1878–1889.

    Article  PubMed  CAS  Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105: 300–304.

    Article  PubMed  CAS  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22: 565–572.

    PubMed  CAS  Google Scholar 

  • Knief C, Vanitchung S, Harvey NW, Conrad R, Dunfield PF, Chidthaisong A (2005) Diversity of methanotrophic Bacteria in tropical upland soils under different land uses. Appl Environ Microbiol 71: 3826–3831.

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Nielsen PH., Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridisation and microautoradiography – a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65: 1289–1297.

    PubMed  CAS  Google Scholar 

  • Li T, Wu T-D, Mazeéas L, Toffin L, Guerquin-Kern J-L, Leblon G, Bouchez T, (2008) Simultaneous analysis of microbial identity and function using NanoSIMS. Environ Microbiol 10: 80–588.

    Article  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68: 5367–5373.

    Article  PubMed  CAS  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74: 1305–1315.

    Article  PubMed  CAS  Google Scholar 

  • Murase J, Frenzel P (2008) Selective grazing of methanotrophs by protozoa in a rice field soil. FEMS Microbiol Ecol 65: 408–414.

    Google Scholar 

  • Omelchenko MV, Vasilyeva LV, Zavarzin GA, Savel'eva ND, Lysenko, M, Mityushina LL, Khmelenina VN Trotsenko YA (1996) A novel psychrophilic methanotroph of the genus Methylobacter. Mikrobiologiya 65: 339–343.

    Google Scholar 

  • Ouverney CC, Furhman, JA (1999) Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65: 1746–1752.

    PubMed  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874–878.

    Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403: 646–649.

    Article  PubMed  CAS  Google Scholar 

  • Rahalkar M, Schink B (2007) Comparison of aerobic methanotrophic communities in littoral and profundal sediments of Lake Constance by a molecular approach. Appl Environ Microbiol 73: 4389–4394.

    Article  PubMed  CAS  Google Scholar 

  • Rodhe, H. (1990) A comparison of the contribution of various gases to the greenhouse effect. Science 248: 1217–1219.

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Tsubota J, Eshinimaev B, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55: 1877–1884.

    Article  PubMed  CAS  Google Scholar 

  • Whittenbury R, Phillips KC, Wilkinson, JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61: 205–218.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chen, Y., Murrell, J.C. (2010). Ecology of Aerobic Methanotrophs and their Role in Methane Cycling. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_229

Download citation

Publish with us

Policies and ethics