Skip to main content

Microbial Ecology of Oil Reservoir Souring and its Control by Nitrate Injection

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Oil reservoir souring is the production of hydrogen sulfide by sulfate-reducing microorganisms (SRM) in oil fields. Anaerobic respiration of sulfate is supported by various electron donors in petroleum reservoir ecosystems. Nitrate addition results in souring control by stimulating nitrate-reducing microorganisms (NRM) that directly or indirectly utilize petroleum-derived SRM electron donors. The oxidative capacity of nitrate for this process depends on NRM physiology and whether nitrate is metabolized to fully reduced end products or is partially reduced to nitrite. Production of nitrite is beneficial because it inhibits SRM. Oil companies use various microbiological surveillance tools to monitor the success of nitrate injection or other souring control strategies. SRM surveillance traditionally relies on cultivation-based testing but in recent years has expanded to include cultivation-independent molecular methods for detection and quantification of both harmful and beneficial oil reservoir microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Kindi A, Prince-Wright R, Walsh J, Kuijvenhoven C, Morgenthaler L, Moore W (2008) Challenges for waterflooding in a deepwater environment. SPE Prod Oper 23: 404–410. DOI: 10.2118/118735-PA.

    CAS  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919–1925.

    PubMed  CAS  Google Scholar 

  • Amann RI, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Barth T (1991) Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl Geochem 6: 1–15.

    Article  CAS  Google Scholar 

  • Birkeland NK (2005) Sulfate-reducing bacteria and archaea. In Petroleum Microbiology. M Magot and B Ollivier (eds.). Washington, DC: ASM Press, pp. 35–55

    Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33: 1162–1169.

    PubMed  CAS  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5: 89–96.

    Article  Google Scholar 

  • Chin KL, Sharma ML, Russell LA, O’Niell KR, Lovley DR (2008) Quantifying expression of dissimilatory (bi)sulfite reductase gene in petroleum-contaminated marine harbor sediments. Microb Ecol 55: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Daims H, Stöcker K, Wagner M (2005) Fluorescence in situ hybridization for the detection of prokaryotes. In Molecular Microbial Ecology. AM Osborn and CJ Smith (eds.). New York: Taylor and Francis, pp. 213–240.

    Google Scholar 

  • Dalsgaard T, Bak F (1994) Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics and regulation. Appl Environ Microbiol 60: 291–297.

    PubMed  CAS  Google Scholar 

  • Eckford RE, Fedorak PM (2004) Using nitrate to control microbially-produced hydrogen sulfide in oil field waters. In Studies in Surface Science and Catalysis, Vol. 151: Petroleum Biotechnology, Developments and Perspectives. R Vazquez-Duhalt and R Quintero-Ramirez (eds.). Amsterdam: Elsevier, pp. 307–340.

    Chapter  Google Scholar 

  • Feris K, MacKay D, de Sieyes N, Chakraborty I, Einarson M, Hristova K, Scow K (2008) Effect of ethanol on microbial community structure and function during natural attenuation of benzene, toluene, and o-xylene in a sulfate-reducing aquifer. Environ Sci Technol 42: 2289–2294.

    Article  PubMed  CAS  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, DeLong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105: 3805–3810.

    Article  PubMed  CAS  Google Scholar 

  • Gevertz D, Telang A, Voordouw G, Jenneman G (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66: 2491–2501.

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the “omics” age. Nat Rev Microbiol 5: 820–826.

    Article  PubMed  CAS  Google Scholar 

  • Greene EA, Brunelle V, Jenneman GE, Voordouw G (2006) Synergistic inhibition of microbial sulfide production by combinations of the metabolic inhibitor nitrite and biocide. Appl Environ Microbiol 72: 7897–7901.

    Article  PubMed  CAS  Google Scholar 

  • Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol 5: 607–617.

    Article  PubMed  CAS  Google Scholar 

  • Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53: 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Grigoryan A, Voordouw G (2008) Microbiology to help solve our energy needs. Ann NY Acad Sci 1125: 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Grigoryan A, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, Voordouw G (2008) Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol 74: 4324–4335.

    Article  PubMed  CAS  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rosselló-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65: 999–1004.

    PubMed  CAS  Google Scholar 

  • Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186: 7944–7950.

    Article  PubMed  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344–352.

    Article  PubMed  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72: 5181–5189.

    Article  PubMed  CAS  Google Scholar 

  • Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog 19: 338–345.

    Article  PubMed  CAS  Google Scholar 

  • Hubert C, Nemati M, Jenneman GE, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68: 272–282.

    Article  PubMed  CAS  Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73: 2644–2652.

    Article  PubMed  CAS  Google Scholar 

  • Hubert C, Voordouw G, Mayer B (2009) Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: the example of oil reservoir souring control. Geochim Cosmochim Acta (in press).

    Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Loy A, Qiu YL, Hugenholtz P, Kimura N, Wagner M, Ohashi A, Harada H (2006) Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72: 2080–2091.

    Article  PubMed  CAS  Google Scholar 

  • Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17: 2–10.

    Article  CAS  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451: 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environ Microbiol 9: 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M (2008) probeCheck – a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol 10: 2894–2896.

    Article  PubMed  CAS  Google Scholar 

  • Loy A, Duller S, Baranyi C, Mußmann M, Ott J, Sharon I, Béjà O, Le Paslier D, Dahl C, Wagner M (2009) Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes. Environ Microbiol 11: 779–800.

    Google Scholar 

  • Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68: 5064–5081.

    Article  PubMed  CAS  Google Scholar 

  • Lücker S, Steger D, Kjeldsen KU, MacGregor BJ, Wagner M, Loy A (2007) Improved 16S rRNA-targeted probe set for analysis of sulfate-reducing bacteria by fluorescence in situ hybridization. J Microbiol Methods 69: 523–528.

    Article  PubMed  Google Scholar 

  • Magot M (2005) Indigenous microbial communities in oil fields. In Petroleum Microbiology. M Magot and B Ollivier (eds.). Washington, DC: ASM Press, pp. 21–33.

    Google Scholar 

  • Moura JJG, Gonzales P, Moura I, Fauque G (2007) Dissimilatory nitrate and nitrite ammonification by sulphate-reducing eubacteria. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems. LL Barton and WA Hamilton (eds.). Cambridge, MA: Cambridge University Press, pp. 241–264.

    Chapter  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6: 441–454.

    PubMed  CAS  Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001a) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74: 424–434.

    Article  PubMed  CAS  Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001b) Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol Prog 17: 852–859.

    Article  PubMed  CAS  Google Scholar 

  • Ollivier B, Cayol JL (2005) Fermentative, iron-reducing, and nitrate-reducing microorganisms. In Petroleum Microbiology. M Magot and B Ollivier (eds.). Washington, DC: ASM Press, pp. 71–88.

    Google Scholar 

  • Ollivier B, Cayol JL, Fauque G (2007) Sulphate-reducing bacteria from oil field environments and deep-sea hydrothermal vents. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems. LL Barton and WA Hamilton (eds.). Cambridge, MA: Cambridge University Press, pp. 305–328.

    Chapter  Google Scholar 

  • Pereira IAC, LeGall J, Xavier AV, Teixeira M (2000) Characterization of heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim Biophys Acta 1481: 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb JF, DeLong EF, Keeler SJ (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11: 176–187.

    Article  PubMed  CAS  Google Scholar 

  • Plugge CM, Balk M, Stams AJM (2002) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52: 391–399.

    PubMed  CAS  Google Scholar 

  • Sanders PF, Sturman PJ (2005) Biofouling in the oil industry. In Petroleum Microbiology. M Magot and B Ollivier (eds.). Washington, DC: ASM Press, pp. 171–198.

    Google Scholar 

  • Schwermer CU, Lavik G, Abed RMM, Dunsmore B, Ferdelman TG, Stoodley P, Gieseke A, de Beer D (2008) Impact of nitrate on the structure and function of bacterial biofilm communities in pipelines used for injection of seawater into oil fields. Appl Environ Microbiol 74: 2841–2851.

    Article  PubMed  CAS  Google Scholar 

  • Seitz HJ, Cypionka H (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol 146: 63–67.

    Article  CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborne AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73: 3612–3622.

    Article  PubMed  CAS  Google Scholar 

  • Smith CJ, Osborne AM (2008) Advantages and limitations of quantitative PCR(Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67: 6–20.

    Google Scholar 

  • Stahl DA, Loy A, Wagner M (2007) Molecular strategies for studies of natural populations of sulphate-reducing microorganisms. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems. LL Barton and WA Hamilton (eds.). Cambridge, MA: Cambridge University Press, pp. 39–116.

    Chapter  Google Scholar 

  • Strohm TO, Griffin B, Zumft WG, Schink B (2007) Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol 73: 1420–1424.

    Article  PubMed  CAS  Google Scholar 

  • Sunde E, Torsvik T (2005) Microbial control of hydrogen sulfide production in oil reservoirs. In Petroleum Microbiology. M Magot and B Ollivier (eds.). Washington, DC: ASM Press, pp. 201–214.

    Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63: 1785–1793.

    PubMed  CAS  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake DWS, Voordouw G (1998) Effects of two diamine biocides on the microbial community from an oil field. Canad J Microbiol 44: 1060–1065.

    Article  CAS  Google Scholar 

  • Telang AJ, Jenneman GE, Voordouw G (1999) Sulfur cycling in mixed cultures of sulfide-oxidizing and sulfate- or sulfur-reducing oil field bacteria. Canad J Microbiol 45: 905–913.

    Article  CAS  Google Scholar 

  • Tiedje J (1988) Ecology of dentrification and dissimilatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms. AJB Zehnder (ed.). New York: Wiley, pp. 179–245.

    Google Scholar 

  • Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In Petroleum Microbiology. M Magot and B Ollivier (eds.). Washington, DC: ASM Press, pp. 123–142.

    Google Scholar 

  • Vester F, Ingvorsen K (1998) Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl Environ Microbiol 64: 1700–1707.

    PubMed  CAS  Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62: 1623–1629.

    PubMed  CAS  Google Scholar 

  • Voordouw G, Shen Y, Harrington CS, Telang AJ, Jack TR, Westlake DWS (1993) Quantitative reverse sample genome probing of microbial communities and its application to oil field production waters. Appl Environ Microbiol 59: 4101–4114.

    PubMed  CAS  Google Scholar 

  • Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems. LL Barton and WA Hamilton (eds.). Cambridge, MA: Cambridge University Press, pp. 265–303.

    Chapter  Google Scholar 

  • Wu L, Thompson DK, Liu S, Fields MW, Bagwell CE, Tiedje JM, Zhou J (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38: 6775–6782.

    Article  PubMed  CAS  Google Scholar 

  • Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 410: 266–269.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Joel Kostka and two anonymous reviewers for critical feedback that improved the manuscript. Financial support from the Max Planck Society is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hubert, C. (2010). Microbial Ecology of Oil Reservoir Souring and its Control by Nitrate Injection. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_204

Download citation

Publish with us

Policies and ethics