Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 353))

  • 2006 Accesses

Abstract

Kinetic or real-time PCR continues to develop at a rapid rate since its development in the early 1990s. New applications are continually being found for this technique and it is replacing conventional PCR in many fields because of its speed, reduced hands-on time, and because the closed-tube format greatly reduces the chance of reaction contamination. This chapter covers the basis of kinetic PCR and also discusses some of the parameters that need to be considered even before the actual amplification—such as nucleic acid extraction and the complementary DNA synthesis step required in the instance of gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higuchi, R., Dollinger, G., Walsh, P. S., and Griffith, R. (1992) Simultaneous amplification and detection of specific DNA sequences. BioTechnology (NY) 10, 413–417.

    Article  CAS  Google Scholar 

  2. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. BioTechnology (NY) 11, 1026–1030.

    Article  CAS  Google Scholar 

  3. Livak, K. J. (1999) Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genetic Anal. 14, 143–149.

    CAS  Google Scholar 

  4. Lyon, E. (2001) Mutation detection using fluorescent hybridization probes and melting curve analysis. Expert Rev. Mol. Diagnostics 1, 92–101.

    Article  CAS  Google Scholar 

  5. Hodgson, D. R., Clayton, S. J., Girdler, F., et al. (2001) ARMS allele-specific amplification-based detection of mutant p53 DNA and mRNA in tumors of the breast. Clin. Chem. 47, 774–778.

    PubMed  CAS  Google Scholar 

  6. DeGraves, F. J., Gao, D. and Kaltenboeck, B. (2003) High-sensitivity quantitative PCR platform. Biotechniques 34, 106–115.

    PubMed  CAS  Google Scholar 

  7. Espy, M. J., Rys, P. N., Wold, A. D., Uhl, J. R., Sloan, L. M., and Jenkins, G. D. (2001) Detection of herpes simplex virus DNA in genital and dermal specimens by LightCycler PCR after extraction using Isoquick, MagNA Pure and BioRobot 9604 methods. J. Clin. Microbiol. 39, 2233–2236.

    Article  PubMed  CAS  Google Scholar 

  8. Chomczynski, P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–537.

    PubMed  CAS  Google Scholar 

  9. Bustin, S. A. (2002) Quantification of mRNA using real-time reverse transcription real-time PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39.

    Article  PubMed  CAS  Google Scholar 

  10. Huang, Z., Fasco, M. J., and Kaminsky, L. S. (1996) Optimization of DNase I removal of contaminating DNA from RNA for use in quantitative RT-PCR. Biotechniques 20, 1012–1020.

    PubMed  CAS  Google Scholar 

  11. Bauer, P., Rolfs, A., Regitz-Zagrosek, V., Hidebrandt, A., and Fleck, E. (1997) Use of manganese in RT-PCR reduces PCR artefacts resulting from DNase I digestion. Biotechniques 22, 1128–1132.

    PubMed  CAS  Google Scholar 

  12. Hanaki, K., Nakatake, H., Yamamoto, K., Odawara, T., and Yoshikura, H. (2000) DNase I activity retained after heat inactivation in standard buffer. Biotechniques 29, 38–42.

    PubMed  CAS  Google Scholar 

  13. Wiame, I., Remy, S., Swennen, R. and Sági, L. (2000) Irreversible heat inactivation of DNase I without RNA degradation. Biotechniques 29, 252–256.

    PubMed  CAS  Google Scholar 

  14. Wilkening, S. and Bader, A. (2004) Quantitative real-time polymerase chain reaction: methodical analysis and mathematical model. J. Biomol. Tech. 15, 107–111.

    PubMed  Google Scholar 

  15. Smith, C., Berg, D. Beaumont, S., Standley, N. T., Wells, D. N., and Pfeffer, P. L. (2006) Simultaneous gene quantification of multiple genes in individual bovine nuclear transfer blastocysts. Reproduction; Submitted.

    Google Scholar 

  16. Polimuri, S. K., Ruknudin, A. and Schulze, D. H. (2002) RNase H and its effects on PCR. Biotechniques 32, 1224–1225.

    Google Scholar 

  17. Lader, E. (2002) Ambion presentation.

    Google Scholar 

  18. Ståhlberg, A., Håkansson, J., Xian, X., Semb, H., and Kubista, M. (2004) Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 5, 509–515.

    Article  Google Scholar 

  19. Lekanne Deprez, R. H., Fijnvandraat, A. C., Ruijter, A. M., and Moorman, A. F. M. (2003) Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal. Biochem. 307, 63–69.

    Article  Google Scholar 

  20. Liss, B. (2002) Improved quantitative real-time RT-PCR for expression profiling of individual cells. Nucleic Acids Res. 30, e89.

    Article  PubMed  Google Scholar 

  21. Bromhead, C., Miller, J. H., and McDonald, F. J. (2006) Regulation of T-cadherin by hormones, glucocorticoid and EGF. Gene 374, 58–67.

    Article  PubMed  CAS  Google Scholar 

  22. Read, S. J. (2001) Recovery efficiencies of nucleic acid extraction kits as measured by quantitative LightCycler PCR. Mol. Pathol. 54, 86–90.

    Article  PubMed  CAS  Google Scholar 

  23. Bioinformatics, LLC. (2004) The market for real-time PCR reagents and instrumentation. http://www.gene2drug.com.

  24. Sagner, G., Tabiti, K., Gutekunst, M., Soong, R., inventors. (2004) Method for the efficiency-corrected real-time quantification of nucleic acids. US Patent 6,691,041.

    Google Scholar 

  25. Tellmann, G. (2006) The E-Method: a highly accurate technique for gene-expression analysis. Nature Methods 3(7), ii.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Mackay, J. (2007). Introduction to Kinetic (Real-Time) PCR. In: Hilario, E., Mackay, J. (eds) Protocols for Nucleic Acid Analysis by Nonradioactive Probes. Methods in Molecular Biology, vol 353. Humana Press. https://doi.org/10.1385/1-59745-229-7:167

Download citation

  • DOI: https://doi.org/10.1385/1-59745-229-7:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-430-2

  • Online ISBN: 978-1-59745-229-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics