Skip to main content

Ras Signaling Pathway for Analysis of Protein-Protein Interactions in Yeast and Mammalian Cells

  • Protocol
MAP Kinase Signaling Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 250))

Abstract

The mitogen-activated protein kinase (MAPK) signaling pathway is initiated by diverse stimuli that occur at the cell membrane and result in a change in pattern of gene expression in the nucleus. Although multiple proteins are involved in the transmission process through a complex cascade of events, the signal is rapidly and efficiently transmitted (1). Protein-protein interaction plays a major role in the transmission process itself as well as in the maintenance of the signaling molecules in an inactive dormant state within the cell. A large variety of mechanisms are involved in the translation of the signal into molecular events. One of the mechanisms involved is the generation of increased local concentration of reactant within a large compartment such as the cytoplasm. A case in point is the plasma membrane. Upon growth factor stimulation, e.g., the inner leaflet of the plasma membrane serves as a subcellular compartment for the recruitment of enzymes in close proximity to their substrates, thereby overcoming the thermodynamic barrier and permitting the enzymatic reaction to occur. The plasma membrane compartment can be subdivided into multiple microenvironments as well (2). Protein recruitment per se is possibly accompanied by phosphorylation and a transient conformational change that results in potentiation of the corresponding enzymatic activity. Autophosphorylation of the cytoplasmic tail of growth factor receptors is the best example for this regulatory process, which serves as a docking platform for multiple effector molecules such as Grb2-Sos, phospholipase Cγ, p85–p110 subunits of phosphatidylinositol 3-kinase, GAP, and phosphotyrasine phosphatase (PTP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410, 37–40.

    Article  PubMed  CAS  Google Scholar 

  2. Carpenter, G. (2000) The EGF receptor: a nexus for trafficking and signaling. Bioessays 22, 697–707.

    Article  PubMed  CAS  Google Scholar 

  3. Huang, D. C. S., Marshall, C. J., and Hancock, J. F. (1993) Plasma membrane targeted ras GTPase-activating protein is a potent suppressor of p21ras function. Mol. Cell. Biol. 13, 2420–2431.

    PubMed  CAS  Google Scholar 

  4. Klippel, A., Reinhard, C., Kavanaugh, M., Apell, G., Escobedo, M. A., and Williams, L. T. (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell. Biol. 16, 4117–4127.

    PubMed  CAS  Google Scholar 

  5. Aronheim, A., Engelberg, D., Li, N., Al-Alawi, N., Schlessinger, J., and Karin, M. (1994) Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78, 949–961.

    Article  PubMed  CAS  Google Scholar 

  6. Quilliam, L. A., Huff, S. Y., Rabun, K. M., Wei, W., Park, W., Broek, D., and Der, C. J. (1994) Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc. Natl. Acad. Sci. USA 91, 8512–8516.

    Article  PubMed  CAS  Google Scholar 

  7. Hancock, J. F., Magee, A. I., Childs, J., and Marshall, C. J. (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177.

    Article  PubMed  CAS  Google Scholar 

  8. Leevers, S. J., Paterson, H. F., and Marshall, C. J. (1994) Requirement for ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414.

    Article  PubMed  CAS  Google Scholar 

  9. Lu, W., Katz, S., Gupta, R., and Mayer, B. J. (1997) Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7, 85–94.

    Article  PubMed  CAS  Google Scholar 

  10. Aronheim, A. (2000) Protein recruitment systems for the analysis of protein-protein interactions. Biochem. Pharmacol. 60, 1009–1013.

    Article  PubMed  CAS  Google Scholar 

  11. Aronheim, A., Zandi, E., Hennemann, H., Elledge, S., and Karin, M. (1997) Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell. Biol. 17, 3094–3102.

    PubMed  CAS  Google Scholar 

  12. Yu, X., Wu, L. C., Bowcock, A. M., Aronheim, A., and Baer, R. (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273, 25,388–25,392.

    Article  PubMed  CAS  Google Scholar 

  13. Andreev, J., Simon, J. P., Sabatini, D. D., Kam, J., Plowman, G., Randazzo, P. A., and Schlessinger, J. (1999) Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol. 19, 2338–2350.

    PubMed  CAS  Google Scholar 

  14. Ko, L., Cardona, G. R., and Chin, W. W. (2000) Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci USA 97, 6212–6217.

    Article  PubMed  CAS  Google Scholar 

  15. Barak, O., Aronheim, A., and Shaul, Y. (2001) HBV X protein targets HIV Tat-binding protein 1. Virology 283, 110–120.

    Article  PubMed  CAS  Google Scholar 

  16. Aronheim, A. (1997) Improved efficiency Sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res. 25, 3373,3374.

    Article  PubMed  CAS  Google Scholar 

  17. Aronheim, A. (2001) Protein recruitment systems for the analysis of protein-protein interactions. Methods 24, 29–34.

    Article  PubMed  CAS  Google Scholar 

  18. Broder, Y. C., Katz, S., and Aronheim, A. (1998) The Ras recruitment system, a novel approach to the study of protein-protein interactions. Curr. Biol. 8, 1121–1124.

    Article  PubMed  CAS  Google Scholar 

  19. Aronheim, A., Broder, Y. C., Cohen, A., Fritsch, A., Belisle, B., and Abo, A. (1998) Chp, a homologue of the GTPase Cdc42, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr. Biol. 8, 1125–1128.

    Article  PubMed  CAS  Google Scholar 

  20. Maroun, M. and Aronheim, A. (1999) A novel in vivo assay for the analysis of protein-protein interaction. Nucleic Acids Res. 27, e4.

    Article  PubMed  CAS  Google Scholar 

  21. Hubsman, M. Y. G., and Aronheim, A. (2001) A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res. 29, e18.

    Article  PubMed  CAS  Google Scholar 

  22. Mumberg, D., Muller, R., and Funk, M. (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22, 5767–5768.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Aronheim, A. (2004). Ras Signaling Pathway for Analysis of Protein-Protein Interactions in Yeast and Mammalian Cells. In: Seger, R. (eds) MAP Kinase Signaling Protocols. Methods in Molecular Biology™, vol 250. Humana Press. https://doi.org/10.1385/1-59259-671-1:251

Download citation

  • DOI: https://doi.org/10.1385/1-59259-671-1:251

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-998-8

  • Online ISBN: 978-1-59259-671-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics