Skip to main content

Purinergic Receptors in the CNS

  • Protocol
Receptor Binding

Part of the book series: Neuromethods ((NM,volume 4))

Abstract

The phenomenon of “nonadrenergic, noncholinergic” neurotransmission in the mammalian peripheral nervous system probably involves the mediation of the purines, adenosine and its nucleotide, ATP (Burnstock, 1972, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arch J. R. S. and Newsholme E A (1978) The control of metabolism and the hormonal role of adenosine Essays Biochem 14, 82–123

    PubMed  CAS  Google Scholar 

  • Arnanada J V. and Turmen T. (1979) Methylxanthines in apnea of prematurity Clin Perinatol 6, 87–108

    Google Scholar 

  • Arvidsson S B, Ekstrom-Jodal B., Martmell S A G, and Niemand D (1982) Aminophylline antagonizes diazepam sedation. Lancet ii, 1467

    Google Scholar 

  • Baud-Lambert J., Marwood J. F., Davies L. P., and Taylor K. M. (1980) I-methyllsoguanosine. an orally active marine natural product with skeletal muscle and cardiovascular effects. Life. Sci 26, 1069–1077.

    Google Scholar 

  • Baker P F (1972) Transport and metabolism of calcium ions in nerve Prog Biophys Mol Biol 24, 177–224.

    PubMed  CAS  Google Scholar 

  • Barnes E M. and Thampy K. G (1982) Subclasses of adenosine receptors in brain membranes from adult tissue and from primary cultures of chick embryo J Neurochem 39, 647–652.

    PubMed  CAS  Google Scholar 

  • Barraco R. A., Coffin V L., Altman H J, and Phillis J W (1983) Central effects of adenosine analogs and locomotor activity in mice and antagonism by caffeine Brain Res 272, 392–395

    PubMed  CAS  Google Scholar 

  • Barraco R. A., Aggarwal A K., Phillis J W., Moore M A., and Wu P. H (1984) Dissociation of the locomotor and hypotensive effects of adenosine analogs in the rat. Neurosci Lett. 48, 139–144.

    PubMed  CAS  Google Scholar 

  • Belardinelli L, West A, Crampton R, and Berne R. M (1983) Chronotropic and Dromotropic Effects of Adenosme, in Regulatory Function of Adenosine (Berne R M., Rall T W, and Rubio R, eds.) pp 377–398, Martinus Nijhoff, Boston

    Google Scholar 

  • Bender A. S., Wu P H., and Phillis J. W. (1981) The rapid uptake and release of [3H]-adenosine by rat cerebral cortical synaptosomes J Neurochem. 36, 651–660.

    PubMed  CAS  Google Scholar 

  • Berne R. M. (1980) The role of adenosine in the regulation of coronary blood flow. Circ. Res. 46, 807–813.

    Google Scholar 

  • Berne R. M., Knabb R. M., Ely S. W., and Rubio R. (1983a) Adenosine in the local regulation of blood flow: a brief overview. Fed. Proc 42, 3136–3142.

    PubMed  CAS  Google Scholar 

  • Berne R. M., Rail T. W., and Rubio R. (1983b) Regulatory Function of Adenosine. Martmus Nijhoff, Boston.

    Google Scholar 

  • Boulenger J-P., Patel J., Post R M., Parma A., and Marangos P J (1983) Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci 32, 1135–1142.

    PubMed  CAS  Google Scholar 

  • Braestrup C., Nielsen M., and Olsen C. E (1980) Urinary and brain β-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors Proc. Natl. Acad. Sci. USA 77, 2288–2292

    PubMed  CAS  Google Scholar 

  • Browne R. G. and Welch W. M. (1982) Steroselective antagonism of phencychdine’s discriminative properties by adenosine receptor agonists. Science 217, 1157–1158.

    PubMed  CAS  Google Scholar 

  • Bruns R. F (1980) Adenosine receptor activation in human fibroblasts Nucleoside agonists and antagonists. Can. J. Physiol. Pharmacol. 58, 673–691.

    PubMed  CAS  Google Scholar 

  • Bruns R F (1981) Adenosine antagonism by purines, pteridines, and benzopteridines in human fibrobasts. Biochem Pharmacol. 30, 325–333.

    PubMed  CAS  Google Scholar 

  • Bruns R. F., Daly J. W., and Snyder S. H. (1980) Adenosine receptors in brain membranes binding of N6-cyclohexyl-[3H]-adenosine and 1,3-diethyl-8-[3H]-phenylxanthine. Proc. Natl. Acad. Sci USA 77, 5547–5551

    PubMed  CAS  Google Scholar 

  • Bruns R. F, Daly J W., and Snyder S. H. (1983a) Adenosine receptor binding. structure activity analysis generates extremely potent xanthine antagonists. Proc. Natl Acad. Sci. USA 80, 2077–2080

    PubMed  CAS  Google Scholar 

  • Bruns R. F., Katims J. J., Annau Z., Snyder S. H., and Daly J. W. (1983b) Adenosine receptor interactions and anxiolytics. Neuropharmacol 22, 1523–1529.

    CAS  Google Scholar 

  • Burnstock G. (1972) Purinergic nerves. Pharmacol Rev 24, 509–581.

    PubMed  CAS  Google Scholar 

  • Burnstock G. (1978) A Basis for Distinguishing Two Types of Purinergic Receptors, in Cell Membrane Receptors for Drugs and Hormones (Bolis L, and Straub R. N., eds.) pp 107–118, Raven Press, New York.

    Google Scholar 

  • Burnstock G. (1981) Pathophysiology of migraine a new hypothesis Lancet ii, 1397–1399

    Google Scholar 

  • Burnstock G. (1983) A Comparison of Receptors for Adenosine and Adenine Nucleotides, in Regulatory Function of Adenosine (Berne R M, Rall T. W, and Rubio R., eds.) pp. 49–62, Martinus Nijhoff, Boston

    Google Scholar 

  • Burnstock G. and Buckley N. J. (1985) The Classification of Receptors for Adenosine and Adenine Nucleotides, in Methods in Pharmacology 6, Methods Used In Adenosine Research. (Paton D. M., ed.) Plenum, New York.

    Google Scholar 

  • Burnstock G. and Hoyle C. H. V (1985) PACPX—a substituted xanthine—antagonizes both the A1 and A2 subclasses of the P1 purinoceptor. antagonism of the A2 subclass is competitive but antagonism of the A1 subclass is not Brit J Pharmacol, 85, 291–296

    PubMed  CAS  Google Scholar 

  • Carlsson A (1975) Receptor-Mediated Control of Dopamine Metabolism, in Pre-and Postsynaptic Receptors (Usdin E and Bunney W E, Jr, eds.) pp 49–67, Marcel Dekker, New York.

    Google Scholar 

  • Charney P. S., Galloway M. P., and Heninger G R. (1984) The effects of caffeine on plasma MHPG, subjective anxiety, autonomic symptoms, and blood pressure in healthy humans Life Sci 35, 135–144

    PubMed  CAS  Google Scholar 

  • Coffin V. C. and Carney J. M (1983) Behavioral Pharmacology of Adenosine Analogs, in Physiology and Pharmacology of Adenosine Derivatives (Daly J. W., Kuroda Y., Phillis J. W., Shimizu H, and Ui M., eds) pp 267–274, Raven, New York.

    Google Scholar 

  • Coffin V. C., Taylor J A, Phillis J. W., Altman H J, and Barraco R A (1984) Behavioral interaction of adenosine and methylxanthines on central purinergic systems Neurosci. Lett, 47, 91–98.

    PubMed  CAS  Google Scholar 

  • Collier H O. J. and Tucker J F. (1983) Novel form of drug-dependence—on adenosine in guinea pig ileum Nature (Lond.) 302, 618–621.

    CAS  Google Scholar 

  • Collier H. O. J., Francis D L, Henderson G., and Schnieder C. (1974) Quasi-morphine abstinence syndrome. Nature (Lond.) 249, 471

    CAS  Google Scholar 

  • Collier H O. J, Cuthbert N. J., and Francis D L. (1981) Character and mearung of quasi-morphine withdrawal phenomena elicited by methylxanthines Fed Proc. 40, 1513–1518

    PubMed  CAS  Google Scholar 

  • Collier H. O. J., Plant N. T., Tucker J. F., and Von Uexull A (1984) Inhibition with adenosine derivatives of opiate withdrawal effects Brit. J Pharmacol 81, 131P

    Google Scholar 

  • Collis M G., and Brown C. M (1983) Adenosine relaxes the aorta by interacting with an A2-receptor and an intracellular site. Eur. J Pharmacol 96, 61–69

    PubMed  CAS  Google Scholar 

  • Cooper D M. F., Londos C, and Rodbell R (1980) Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process. Mol. Pharmacol. 18, 598–601.

    PubMed  CAS  Google Scholar 

  • Crawley J. N., Pate1 J., and Marangos P. J. (1981) Behavioral characterization of two long lasting adenosine analogs. sedative properties and interaction with diazepam. Life Sci 29, 2623–2630.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P and Hollenberg M. (1976) Membrane receptor and hormone action Adv Protein Chem. 30, 251–451

    PubMed  CAS  Google Scholar 

  • Cubeddu L, Barnes E., and Winer N (1975) Release of norepinephrine and dopamine hydroxylase by nerve stimulation IV An evaluation of a role for cyclic AMP. J. Pharmacol. Exp Ther. 193, 105–127

    PubMed  CAS  Google Scholar 

  • Daly J. W. (1973) Role of ATP and Adenosine Receptors in Physiologic Processes: Summary and Prospectus, in Physiology and Pharmacology of Adenosine Derivatives (Daly J. W., Kuroda Y, Phillis J. W., Shimizu H., and Ui M, eds.) pp. 275–290, Raven, New York

    Google Scholar 

  • Daly J W (1977) Cyclic Nucleotides in the Nervous System. Plenum, New York.

    Google Scholar 

  • Daly J.W. (1982) Adenosine receptors target sites for drugs J.Med Chem 25, 197–207.

    PubMed  CAS  Google Scholar 

  • Daly J. W. (1983) Binding of Radioactive Ligands to Adenosine Receptors in the Central Nervous System, in Regulatory Function of Adenosine. (Berne R. M., Rall T W., and Rubio R, eds) pp. 97–113, Martinus Nijhoff, Boston

    Google Scholar 

  • Daly J. W., Bruns R. F., and Snyder S H (1981) Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Sci 28, 2083–2097.

    PubMed  CAS  Google Scholar 

  • Daly J W, Butts-Lamb P, and Padgett W (1983) Subclasses of adenosine receptors in the central nervous system interaction with caffeine and related methylxanthines Cell Mol. Neurobiol. 3, 69–80

    PubMed  CAS  Google Scholar 

  • Daly J W., Mimitkitpaisan Y., Pons F., Bruns R F., Smellie F., and Skolnick P (1979) Binding sites for adenosine analogs: Possible relationship to cyclic-AMP generating systems in brain tissue Pharmacologist 21, 253

    Google Scholar 

  • Dar M. S., Mustafa S. J., and Wooles W. R (1983) Possible role of adenosine in the CNS. Effects of ethanol. Life Sci 33, 1363–1374.

    PubMed  CAS  Google Scholar 

  • Davies L P, Cook A F, Poonian M., and Taylor K. M. (1980) Displacement of [3H]-diazepam binding in rat brain by dipyridamole and by 1-methylisoguanosine, a marine natural product with muscle-relaxant activity Life Sci. 26, 1089–1094.

    PubMed  CAS  Google Scholar 

  • Davies L. P., Brown D. J., Chen Chow S., and Johnston GAR (1983) Pyrazolo [3,4-D]-pyrimidines, a new class of adenosine antagonists. Neurosci. Lett 41, 189–194.

    PubMed  CAS  Google Scholar 

  • Davies L. P., Chow S. C., and Johnston G A. R. (1984) Interaction of purines and related compounds with photoaffinity-labeled benzodlazepine receptors in rat brain membranes Eur J. Pharmacol 97, 325–329.

    PubMed  CAS  Google Scholar 

  • de Mazancourt P. and Giudicelli Y. (1984) N6-Phenyhsopropyladenosine stimulates in normal and inhibits in adrenalectomized rats the low Km cyclic AMP phosphodiesterase in brain. Brain Res. 300, 211–217

    PubMed  Google Scholar 

  • Dolphin A. C. and Archer E R. (1983) An adenosine agonist inhibits and a cyclic AMP analogue enhances the release of glutamate but not GABA from slices of rat dentate gyrus. Neurosci. Lett. 43, 49–54

    PubMed  CAS  Google Scholar 

  • Drury A. N. and Szent-Gyorgi A (1929) The physiological activity of adenine compounds with especial reference to then actions upon the mammalian heart J Physiol. (Lond.) 68, 213–237.

    CAS  Google Scholar 

  • Dunwiddie T. V. (1980) Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21, 541–548.

    PubMed  CAS  Google Scholar 

  • Dunwiddie T. V. and Hoffer B. J (1980) Adenine nucleotides and synaptic transmission in the in vitro rat hippocampus. Brit. J. Pharmacol. 69, 59–68

    CAS  Google Scholar 

  • Dunwiddie T. V., Hoffer B. J and Fredholm B. B (1981) Alkylxanthines elevate hippocampal excitability. evidence for a role for endogenous adenosine. Naunyn-Schmeideberg’s Arch. Pharmacol. 316, 326–330.

    CAS  Google Scholar 

  • Dunwiddie T. V. and Worth T (1982) Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. J. Pharmacol Exp Ther. 220, 70–76.

    PubMed  CAS  Google Scholar 

  • Dunwiddie T. V, Basile A. S., and Palmer M. R. (1984) Electrophysiological responses to adenosine analogs in rat hippocampus and cerebellum Evidence for mediation by adenosine receptors of the A-1 subtype Life Sci 34, 34–47

    Google Scholar 

  • Ebersolt C, Premont J., Prochiantz A., Perez M, and Bockaert J. (1983) Inhibition of brain adenylate cyclase by A1-adenosine receptors pharmacological characteristics and location. Brain Res. 267,123–124.

    PubMed  CAS  Google Scholar 

  • Ebstein R. P. and Daly J W. (1982) Release of norepinephrine and dopamine from brain vesicular preparations effects of adenosine analogs. Cell Mol Neurobiol 2, 193–204.

    PubMed  CAS  Google Scholar 

  • Edvinsson L. and Fredholm B. B. (1983) Characterization of adenosine receptor in isolated cerebral arteries of cat Brit J. Pharmacol 80, 631–637

    CAS  Google Scholar 

  • Elliott J, Jhamandas K, Notman H, and Sutak M (1983) Antagonism of enkephalin action on acetylcholine release by methylxanthine. lack of a purine link Brit. J Pharmacol. 80, 727–734

    CAS  Google Scholar 

  • Farah A. E., Alousi A. A., and Schwarz, Jr. R. P (1984) Positive inotropic agents Ann Rev Pharmacol Toxicol 24, 275–328.

    CAS  Google Scholar 

  • Feldberg W. and Sherwood S L (1954) Injections of drugs into lateral ventricle of the cat. J Physiol. (Lond.) 123, 148–167.

    CAS  Google Scholar 

  • Ferkany J. W., Valentine H., Stone G, and Williams M. (1986) Adenosine A-1 receptors in mammalian brain: Species differences in their interactions with agonists and antagonists J. Neurochem., submitted.

    Google Scholar 

  • Fox I H. and Kurpis L. (1983) Binding characteristics of an adenosine receptor in human placenta J Biol Chem 258, 6952–69551

    PubMed  CAS  Google Scholar 

  • Fredholm B. B. (1982a) Adenosine receptors Med Biol. 60, 289–293

    PubMed  CAS  Google Scholar 

  • Fredholm B. B. (1982b) Characterization of adenosine receptors in the brain. Acta Physiol Scand. Suppl. 508, 31

    Google Scholar 

  • Fredholm B. B and Vernet L. (1978) Morphine increases depolarization-induced purine release from rat cortical slices Acta Physiol. Scand 104, 502–504

    PubMed  CAS  Google Scholar 

  • Fredholm B. B and Hedqvist P (1980) Modulation of neurotransmission by purine nucleotides and nucleosides. Biochem. Pharmacol. 29, 1635–1643.

    PubMed  CAS  Google Scholar 

  • Fredholm B. B. and Persson C G. A. (1982) Xanthine derivatives as adenosine receptor antagonists Eur J Pharmacol 81, 673–676

    PubMed  CAS  Google Scholar 

  • Fredholm B B., Jonzon B, Lindgren E., and Lindstrom K. (1982) Adenosine receptors mediating cyclic AMP production in the rat hippocampus. J Neurochem 39, 165–175.

    PubMed  CAS  Google Scholar 

  • Fredholm B. B., Dunwiddie T V., Bergman B., and Lindsham, K (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res. 295, 127–136.

    PubMed  CAS  Google Scholar 

  • Frew R. and Lundy P. M (1982) Effect of arylazido aminopropionyl ATP (ANAPP3), a putative ATP antagonist, on ATP responses of isolated guinea pig smooth muscle Life Sci. 30, 259–267.

    PubMed  CAS  Google Scholar 

  • Galloway M. P and Roth R. H. (1983a) Clonidine prevents methylxanthine stimulation of norepinephrine metabolism in rat brain J Neurochem. 40, 246–251.

    PubMed  CAS  Google Scholar 

  • Galloway M. P. and Roth R H (1983a) Clonidine prevents methylxanthine stimulation of norepinephrine metabolism in rat brain J Neurochem. 40, 246–251.

    PubMed  CAS  Google Scholar 

  • Galloway M P and Roth R H (1983b) Neuropharmacology of 3-isobutylmethylxanthine. effect on central noradrenergic systems in vivo. J. Pharmacol Exp. Ther. 227, 1–8.

    PubMed  CAS  Google Scholar 

  • Gavish M., Goodman R R., and Snyder S H (1982) Solubilized adenosine receptors in the brain. regulation by guanine nucleotrdes Science 215, 1633–1635.

    PubMed  CAS  Google Scholar 

  • Gold M. S, Pottash A. C., Sweeney D. R., and Kleber H. D. (1980) Opiate withdrawal using clonidine A safe, effective, and rapid non-opiate treatment J Am Med Assoc. 243, 343–346.

    CAS  Google Scholar 

  • Goldberg A. L. and Singer J. J. (1969) Evidence for a role of cyclic AMP in neuromuscular transmission. Proc. Natl. Acad. Sci. USA 64, 134–141.

    PubMed  CAS  Google Scholar 

  • Goldberg M. R., Curatolo P W., Tung C. S., and Robertson D (1982) Caffeine down-regulates beta adrenoceptors in rat forebrain. Neurosci. Lett. 31, 47–52.

    PubMed  CAS  Google Scholar 

  • Goodman R R and Snyder S H (1982) Autoradiographic localization of adenosine receptors in rat brain using [3H]cycIohexyladenosine J Neurosci. 2, 1230–1241.

    PubMed  CAS  Google Scholar 

  • Goodman R. R., Cooper M. J, Gavish M, and Snyder S H (1982) Guanme nucleotide and cation regulation of the binding of [3H]-cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine receptors in brain membranes. Mol Pharmacol 211, 329–335

    Google Scholar 

  • Goodman R. R., Kuhar M J., Hester L., and Snyder S H. (1983) Adenosine receptors. autoradiographic evidence for their location on axon terminals of excitatory neurons Science 220, 967–969.

    PubMed  CAS  Google Scholar 

  • Grant S. J. and Redmond D E. (1982) Methylxanthine activation of noradrenergic unit activity and reversal by clondine. Eur J. Pharmaco1 85, 1054–109

    Google Scholar 

  • Green H N and Stoner H B (1950) Biological Actions of the Adenosine Nucleotides Lewis, London

    Google Scholar 

  • Green R D, Proudfit H. K, and Yeung S-M. H.(1982) Modulation of striatal dopaminergic function by injection of 5′-N-ethylcarboxamide adenosine Science 218, 58–61.

    PubMed  CAS  Google Scholar 

  • Guroff G., Dickens G., End D., and Londos C. (1981) The action of adenosine analogs on PC 12 cells. J. Neurochem. 37, 1431–1439.

    PubMed  CAS  Google Scholar 

  • Hamprecht B. and Van Calker D. (1985) Nomenclature of adenosine receptors. Trends Pharmacol. Sci. 6, 153–154.

    CAS  Google Scholar 

  • Harms H. H., Wardeh G., and Mulder A H. (1978) Adenosine modulates depolarization-induced release of [3H]noradrenaline from slices of rat brain neocortex Eur J. Pharmacol 49, 305–308.

    PubMed  CAS  Google Scholar 

  • Harms H. H, Wardeh G., and Mulder A. H. (1979) Effects of adenosine depolarization-induced release of various radiolabeled neurotransmitters from slices of rat corpus striatum. Neuropharmacol 18, 577–880

    CAS  Google Scholar 

  • Hartzell C H. (1979) Adenosine receptor in frog sinus venosus slow inhibitory potentials produced by adenine compounds and acetyl-choline. J Physiol. (Lond.) 293, 23–49

    CAS  Google Scholar 

  • Haslam R. J., Davidson M. M L., and Desjardins J. W (1978) Inhibition of adenylate cyclase by adenosine analogs in preparations of broken and intact human platelets. Biochem J 176, 83–95

    PubMed  CAS  Google Scholar 

  • Haubrich D. R., Williams M, Yarbrough G. G, and Wood P L. (1981) 2-chloroadenosine inhibits brain acetylcholine turnover. Can J Physiol Pharmacol. 59, 897–1020

    Google Scholar 

  • Haulica I., Aradei L, Bransteau D., and Topoliceanu F. (1973) Preliminary data on the possible hypnogenic role of adenosine. J Neurochem 21, 1019–1020

    PubMed  CAS  Google Scholar 

  • Hazeki O, Katada T., Kurose H., and Ui M. (1983) Effect of Adenosine on Cyclic AMP Accumulation in Cardiac and Other Cells and Its Modification by Islet-Activating Protein, in Physiology and Pharmacology Of Adenosine Derivatives. (Daly J W., Phillis J. W, Kuroda Y, Shimizu H., and Ui M., eds ) pp 41–49, Raven, New York

    Google Scholar 

  • Hedner T., Hedner J., Wessberg P, and Jonason J (1982) Regulation of breathing in the rat indications for a role of central adenosine mechanisms. Neurosci Lett. 33, 147–151.

    PubMed  CAS  Google Scholar 

  • Henon B A and McAfee D A (1983) The ionic basis of adenosine receptor actions of postsynaptic neurones in the rat J. Physiol (Lond) 336, 607–620

    CAS  Google Scholar 

  • Hogaboom G. K., O’Donnell J. P., and Fedan J. S (1980) Purinergic receptors photoaffinity analog of adenosine triphosphate is a specific adenosine triphosphate antagonist Science 208, 1273–1276

    PubMed  CAS  Google Scholar 

  • Hollins C. and Stone T W. (1980) Adenosine inhibition of γ-ammobutyric acid release from slices of rat cerebral cortex. Brit. J Pharmacol 69, 107–112

    CAS  Google Scholar 

  • Hrdina P. D. (1985) Introduction in Neuromethods IV Receptor Binding (Boulton A A., Baker G. B, and Hrdina, P D., eds.) Humana, Clifton, New Jersey

    Google Scholar 

  • Huang, M. and Daly J. W (1974) Adenosine-elicited accumulation of cyclic AMP in brain slices potentiation by agents which inhibit uptake of adenosine. Life Sci. 14, 489–503.

    PubMed  CAS  Google Scholar 

  • Hunt S. P. and Kunzle H (1976) Bidirectional movement of label and transneuronal transport phenomena after inlection of [3H]adenosine in the central nervous system. Brain Res. 112, 127–132

    PubMed  CAS  Google Scholar 

  • Israel M., Lesbats B., Manaranche R., Muemer F. M., and Franchon P. (1980) Retrograde inhibition of transmitter release by ATP. J Neurochem. 34, 923–932.

    PubMed  CAS  Google Scholar 

  • Jahr C. E. and Jesse1 T M (1983) ATP excites a subpopulation of rat dorsal horn neurons Nature (Lond.) 304, 730–732.

    CAS  Google Scholar 

  • Jhmandas K. and Dumbrille A. (1980) Regional release of [3H]adenosine derivatives from rat brain in vivo effect of excitatory amino acids, opiate agonists, and benzodiazepines. Can. J. Physiol. Pharmacol. 58, 1262–1278.

    Google Scholar 

  • Kakiucki S., Rall T. W., and McIlwam H. (1968) The effect of electrical stimulation upon the accumulation of adenosine 3′,5′-phosphate in isolated cerebral tissue. J. Neurochem. 16, 485–491.

    Google Scholar 

  • Katims J. J., Annau Z., and Snyder S. H. (1983) Interactions in the behavioral effects of methylxanthines and adenosine derivatives. J. Pharmacol. Exp Ther 227, 167–173

    PubMed  CAS  Google Scholar 

  • Kelley W. N. (1983) Disorders of Nucleic Acid Metabolism, in Principles of Internal Medicine. (Petersdorf R. G., Adams R. A., Braunwald E., Isselbacher K. J., Martin J. B., and Wilson J. D., eds.) pp. 517–524, McGraw-Hill, New York

    Google Scholar 

  • Kenakin T. P (1982) The potentiation of cardiac responses to adenosine by benzodiazepines. J Pharmacol. Exp. Ther. 222, 752–758.

    PubMed  CAS  Google Scholar 

  • Kluge H., Hartmann W., Wieczorek V, and Zahlten W (1972) Kinetic properties of cerebral 5′-nucleotidase. J. Neurochem. 19, 1409–1411.

    PubMed  CAS  Google Scholar 

  • Kobayashi K., Kuroda Y, and Yoshioka M. (1981) Change of cyclic AMP level in synaptosomes from cerebral cortex increase by adenosine derivatives. J. Neurochem. 36, 86–91.

    PubMed  CAS  Google Scholar 

  • Kuba M. L., Kato E., Kumamoto E., Koketsu K, and Hirai K. (1981) Sustained potentiation of transmitter release by adrenaline and dibutyryl cyclic AMP in sympathetic ganglia Nature (Lond ) 291, 654–656.

    CAS  Google Scholar 

  • Kulkarni S. K. and Mehta A K (1984) P1-purinoceptor antagonism by clonidine in the rat caecum. Life Sci. 34, 2273–2277.

    PubMed  CAS  Google Scholar 

  • Kuroda Y. (1978) Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brain. J Physiol. (Paris) 74, 463–470.

    CAS  Google Scholar 

  • Kuroda Y, and McIlwain H. (1973) Subcellular localization of [14C]adenine derivative newly formed in cerebral tissues and the effects of electrical excitation J Neurochem 21, 889–900

    PubMed  CAS  Google Scholar 

  • Kuroda Y. and McIlwain H. (1974) Uptake and release of [14C]adenine derivatives at beds of mammalian cortical synaptosomes in a superfusion system J. Neurochem. 22, 691–699

    PubMed  CAS  Google Scholar 

  • Lal R. T., Watanabe Y., Kamino Y., and Yoshida H. (1984) Interaction between 2-chloroadenosine and cx-adrenoceptors in rat vas deferens Life Sci 34, 409–418.

    Google Scholar 

  • Lal H., Gherezghiher T., and Carney J (1983) Ineffectiveness of a purine analogue, EMD 28422, in two animal tests of anxiolytic action Drug Dev Res. 3, 75–79.

    CAS  Google Scholar 

  • Laska E. M., Sunshine A., Mueller F, Elvers W B, Siegel C, and Rubin A. (1984) Caffeine as an analgesic adjuncant. J. Am. Med. Assoc 251, 1711–1718

    CAS  Google Scholar 

  • Lee K, Schubert P, Gribkoff V., Sherman B., and Lynch G. (1982) A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus J Neurochem 28, 80–83

    Google Scholar 

  • Lee K. S., Reddington M, Schubert P, and Kreutzberg G (1983) Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of A1 receptors. Brain Res 260, 156–159.

    PubMed  CAS  Google Scholar 

  • Levin A. S. and Morley J. E. (1983) Effect of intraventricular adenosine on food intake in rats Pharmacol Biochem Behav 19, 23–26.

    Google Scholar 

  • Levin R. M., Jacoby R., and Wein A. J. (1983) High-affinity, divalent ion-specific binding of [3H]-ATP to homogenate derived from rabbit urinary bladder. Mol. Pharmacol 23, 1–7.

    PubMed  CAS  Google Scholar 

  • Lloyd K G., Hornykiewicz O., Davidson L, Shannak K, Farley I., Goldstein M., Shibuya M, Kelley W. N., and Fox I (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. N. Eng J Med 305, 1106–1111.

    CAS  Google Scholar 

  • Londos C. and Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc. Natl. Acad Sci USA 74, 5482–5486

    PubMed  CAS  Google Scholar 

  • Londos C., Cooper D. M. F., and Wolff J. (1980) Subclasses of adenosine receptors. Proc Natl Acad Sci USA 77, 2551–2554

    PubMed  CAS  Google Scholar 

  • Londos C., Wolff J, and Cooper D. M. F. (1983) Adenosine Receptors and Adenylate Cyclase Interactions, in Regulatory Functions of Adenosine (Berne R. M., Rall T. W., and Rubio R., eds.) pp. 17–32, Martinus Nijhoff, Boston

    Google Scholar 

  • MacDonald W F. and White T D (1984) Adenosine released from synaptosomes is derived from the extracellular dephosphorylation of released ATP Prog Neuropsychopharmacol & Biol. Psychiat 8, 487–494.

    Google Scholar 

  • Maitre M, Ciesielski L, Lehmann A, Kempt E, and Mandell P. (1974) Protective effect of adenosine and nicotinamide against audogenic seizures. Biochem Pharmacol 23, 2807–2816.

    PubMed  CAS  Google Scholar 

  • Major P. P., Agarawal R. P., and Kufe D. W. (1981) Deoxycoformycin neurological toxicity. Cancer Chemother. Pharmacol 5, 193–196

    PubMed  CAS  Google Scholar 

  • Marangos P. J, Pate1 P., Martino A. M, Dilli M, and Boulenger J-P (1984a) Differential binding properties of adenosine receptor agonists and antagonists in brain. J. Neurochem. 41, 365–374.

    Google Scholar 

  • Marangos P. J., Boulenger J-P, and Pate1 J. (1984b) Effects of chronic caffeine on brain adenosine receptors: regional and ontogenetic studies. Life Sci. 34, 899–907.

    PubMed  CAS  Google Scholar 

  • Marley E. and Nistico G. (1972) Effects of catecholamines and adenosine derivatives given into the brain of fowls. Brit J Pharmacol 46, 619–636.

    CAS  Google Scholar 

  • McIlwain H. (1978) Synaptic mediation and the structuring of cerebral activity. Prog Neurobiol. 11, 189–203.

    PubMed  CAS  Google Scholar 

  • McIlah K., Harb J., Duflos Y,and Bernard, S (1984) 5 ′-Nucleotidase from bovine caudate nucleus synaptic plasma membranes specificity for substrates and cations, study of the carbohydrate moiety by glycosidases. J. Neurochem. 42, 1107–1115

    Google Scholar 

  • Mendelson W. B., Kuruvilla A, Watlington T., Goehl K., Paul S. M., and Skolnick P. (1983) Sedative and electroencephalographic actions of erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA). Relationship to inhibition of brain adenosine deaminase Psychopharmacol 79, 126–129.

    CAS  Google Scholar 

  • Michaelis M. L., Michaelis E. K., and Myers S. L (1979) Adenosine modulation of synaptosomal dopamine release. Life Sci 24, 2083–2092.

    PubMed  CAS  Google Scholar 

  • Morgan P. F, Lloyd H. G. E, and Stone T. W. (1983) Benzodiazepine inhibition of adenosine uptake is not prevented by benzodiazepine antagonists Eur. J. Pharmacol. 87, 121–126.

    PubMed  CAS  Google Scholar 

  • Moritaki H. (1983) Possible Mechanism of Potentiation of the Action of Adenosine by Some Vasodilators, in Physiology and Pharmacology of Adenosine Derivatives (Daly J. W., Kuroda Y., Phillis J. W., Shimizu H., and Ui M., eds.) pp. 197–207, Raven, New York.

    Google Scholar 

  • Murphy K. M. M. and Snyder S. H. (1982) Heterogeneity of adenosine A1 receptor binding in brain tissue. Mol. Pharmacol 21, 250–257

    Google Scholar 

  • Murray T. F. (1982) Upregulation of rat cortical adenosine receptors following chronic administration of theophylline. Eur J Pharmacol. 82, 113–114

    PubMed  CAS  Google Scholar 

  • Murray T F. and Cheney D C (1982) Neuronal location of N6-cyclohexyl-[3H]-adenosine binding sites in rat and guinea pig brain. Neuropharmacol 21, 575–580

    CAS  Google Scholar 

  • Murray T F., Blaker W D., Cheney D. L., and Costa E. (1982) Inhibition of acetylcholine turnover rate in rat hippocampus and cortex by intraventricular injection of adenosine analogs. J. Pharmacol Exp Ther. 222, 550–554.

    PubMed  CAS  Google Scholar 

  • Nagata H., Mimori Y,, Nakamura S., and Kameyama M. (1984) Regional and subcellular distribution in mammalian brain of the enzymes producing adenosine. J. Neurochem. 42, 1001–1007.

    PubMed  CAS  Google Scholar 

  • Nagy J. I., Labella F. S., Buss M., and Daddona P. E. (1984) Immunohistochemistry of adenosine deammase. implications for adenosine neurotransmission. Science 224, 166–168.

    PubMed  CAS  Google Scholar 

  • Nakumura S., Mimori Y., Iljima S, Nagata H., Yamao S., and Kameyama M. (1983) Distribution of Adenosine-Producing Enzymes in the Brain, in Physiology and Pharmacology of Adenosine Derivatives (Daly J. W., Kuroda Y, Phillis J. W., Shimiza H., and Ui M., eds.) pp. 21–29, Raven, New York

    Google Scholar 

  • Newby A. C, Luzio J. P, and Hales C. N (1975) The properties and extracellular locatron of 5′-nucleotidase of the rat fat cell plasma membrane. Biochem. J 146, 625–633.

    PubMed  CAS  Google Scholar 

  • Newman M E. (1983) Adenosine binding sites in brain: relatronship to endogenous levels of adenosine and its physiological and regulatory roles. Neurochem. Inter. 5, 21–35.

    CAS  Google Scholar 

  • Newman M. E. and McIlwain H. (1977) Adenosine as a constituent of the brain and of isolated cerebral trssues, and its relationship to the generation of adenosine 2′,5′-cyclic monophosphate Biochem J 164, 131–137.

    PubMed  CAS  Google Scholar 

  • Newman M. E., Pate1 J., and McIlwain H. (1980) The binding of adenosine to synaptosomal and other preparations from mammalian brain Biochem J. 194, 611–620.

    Google Scholar 

  • Nimit Y., Law J., and Daly J. W. (1982) Binding of 2′,5′-drdeoxyadenosine to brain membranes. Comparison to P-site inhibltion of adenylate cyclase Biochem Pharmacol 31, 3279–3287.

    PubMed  CAS  Google Scholar 

  • Nyhan W. C (1973) The Lesch-Nyhan Syndrome Ann. Rev. Med 24, 41–60.

    PubMed  CAS  Google Scholar 

  • Okada Y. and Saito M. (1979) Inhibitory actions of adenosine, 5HT (serotonm), and GABA (γ-aminobutyric acid) on the postsynaptic potential (PSP) of slices from olfactory cortex and superior colliculus in correlation to the level of cyclic AMP. Brain Res. 160, 368–371.

    PubMed  CAS  Google Scholar 

  • Olssen R. A. (1984) Structure of the coronary artery adenosine receptor Trends Pharmacol Sci. 5, 113–116

    Google Scholar 

  • Osswald H. (1983) Adenosine and Renal Function, in Regulatory Function of Adenosine (Berne R. M., Rall T. W., and Rubio R, eds ) pp. 399–415, Martinus Nijhoff, Boston

    Google Scholar 

  • Paazlow G and Paazlow C (1973) The effects of caffeine and theophylline on nociceptive stimulation in the rat. Acta. Pharmacol Toxicol 32, 22–32

    Google Scholar 

  • Partington C. R., Edwards M. N., and Daly J W (1980) Calcium-dependent desensitization of adenylate cyclase in rat cerebral cortrcal slices. J Neurochem 34, 76–82

    PubMed  CAS  Google Scholar 

  • Pate1 J., Marangos P J, Strvers J, and Goodwin F. K (1982) Characterrzation of adenosine receptors in brain using N6-cyclohexyl-[3H]adenosine Brain Res. 237, 203–214.

    PubMed  CAS  Google Scholar 

  • Persson C G. A. (1984) The Pharmacology of Antiasthmatic Xanthines and the Role of Adenosine, in Asthma Reviews (Moley J, ed ) Academic Press, in press.

    Google Scholar 

  • Phillis J. W. (1984) Antagonism of the actions of psychoactive agents by caffeine Prog. Neurobiol and Biol. Psychiatry. 8, 494–502.

    Google Scholar 

  • Phillis J W and Wu P. H (1981) The role of adenosine and its nucleotides in central synaptic transmission, Progr. Neurobiol. 16, 187–193.

    CAS  Google Scholar 

  • Phillis J. W. and Wu P. H. (1983) The Role of Adenosine in Central Neuromodulation, in Regulatory Fuction of Adenosine (Berne R. M., Rall T. W., and Rubio R., eds.) pp 419–437, Martinus Nijhoff, Boston.

    Google Scholar 

  • Phillis J. W., Edstrom J. P., Kostopoulos G. K., and Kirkpatrick J. R. (1979) Effects of adenosine and adenine nucleotides on synaptic transmission in the cerebral cortex. Can J. Physiol Pharmacol 57, 1289–1312.

    PubMed  CAS  Google Scholar 

  • Phillis J W, Jiang Z G, Chelack B. J., and Wu P H. (1980) The effect of morphine on purine and acetylcholine release from rat cerebral cortex Evidence for a purinergic component in morphine’s action, Pharmacol. Biochem. Behav. 13, 421–427

    PubMed  CAS  Google Scholar 

  • Polmar S.H, Birch R. E., Mandle R., and Rudolph S. A (1983) Adenosine and Cyclic Nucleotides in Modulation of Immune Responses, in Regulatory Function of Adenosine. (Berne R M., Rall T. W., and Rubio R., eds.) pp. 249–259, Martinus Nijhoff, Boston.

    Google Scholar 

  • Pons F., Bruns R F, and Daly J. W (1980) Depolarization-evoked accumulation of cycbc AMP in brain slices the requisite Intermediate adenosine is not derived from hydrolysis of released ATP. J Neurochem. 34, 1319–1323

    PubMed  CAS  Google Scholar 

  • Potter P and White T D (1980) Release of adenosine 5′-triphosphate from synaptosomes from different regions of rat brain. Neuroscience 5, 1351–1356

    PubMed  CAS  Google Scholar 

  • Premont J., Perez M., and Bockaert J. (1977) Adenosine-sensitive adenyl-ate cyclase in rat striatal homogenates and its relationship to dopamine and Ca2+-sensitive adenylate cyclase Mol. Pharmacol 13, 662–670.

    PubMed  CAS  Google Scholar 

  • Premont J., Perez M., Blanc G., Tarsin J. P., Thierry A. M., Herve D, and Bockaert J (1979) Adenosine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular, and cellular distribution Mol Pharmacol 16, 790–804.

    PubMed  CAS  Google Scholar 

  • Proctor W. R. and Dunwiddie T. V. (1984) Behavioral sensitivity to purinergic drugs parallels ethanol sensitivity in selectivity bred mice. Science 224, 519–521

    PubMed  CAS  Google Scholar 

  • Pull I. and McIlwain H. (1974) Rat cerebral cortex adenosine deaminase activity and its subcellular distribution. Biochem J 144, 37–41.

    PubMed  CAS  Google Scholar 

  • Rabe C. S., and McGee, Jr. R. (1982) The Effects of Methylation Inhibitors on Depolarization-Dependent Exocytosis, Phospholipid Methylation, and Protein Carboxymethylation in Clonal Pheochromocytoma Cells, in The Biochemistry of S-Adenosyl-Methionine and Related Compounds (Usdin E, Borchardt R T, and Creveling C R., eds.) MacMillan, London.

    Google Scholar 

  • Rabe C. S. and McGee, Jr. R. (1983) Regulation of depolarization-dependent release of neurotransmitter by adenosine: cychc AMP-dependent enhancement of release from PC 12 cells. J Neurochem 41, 1623–1634.

    PubMed  CAS  Google Scholar 

  • Rabe C S., Willlams T P., and McGee Jr. R. (1980) Enhancement of depolarization-dependent release of norepinephrine by inhibition of S-adenosylmethionine-dependent transmethylation. Life Sci. 27, 1573–1579

    Google Scholar 

  • Radulovacki M., Virus R M., Djuricic-Nedelson M., and Green R. D. (1983) Hypnotic effects of deoxycoformycin in rats Brain Res. 271, 392–395.

    PubMed  CAS  Google Scholar 

  • Radulovacki M, Virus R M., Djuricic-Nedelson M., and Green R. D. (1984) Adenosine analogs and sleep in rats. J. Pharmacol. Exp Ther 228, 268–274

    PubMed  CAS  Google Scholar 

  • Rall T. W. (1980) Central Nervous Stimulants. The Xanthines, in The Pharmacological Basis of Therapeutics (6th Ed.) (Gilman A. G., Goodman L. S., and Gilman A, eds ) pp. 592–607, MacMillan, New York

    Google Scholar 

  • Reddington M. and Schubert P (1979) Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of rat. Neurosci Lett. 14, 37–42.

    PubMed  CAS  Google Scholar 

  • Reddington M., Lee K., and Schubert P. (1982) An A-1 adenosine receptor, characterized by [3H]cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation Neurosci Lett 28, 275–279

    PubMed  CAS  Google Scholar 

  • Reinhard, Jr. J. F., Galloway M. P., and Roth R H. (1983) Noradrenergic stimulation of serotonin synthesis and metabolism. II. Stimulation by 3-isobutyl-1-methylxanthine. J. Pharmacol. Exp Ther. 226, 764–769.

    PubMed  CAS  Google Scholar 

  • Riberio J A. (1982) The decrease of neuromuscular transmission by adenosine depends on previous neuromuscular depression. Arch Int Pharmacodyn. 255, 59–67.

    Google Scholar 

  • Riberio J. A., Sa-Almedia A. M, and Namordo J. M. (1979) Adenosine and adenosine triphosphates decrease 45Ca2+ uptake by synaptosomes stimulated by potassium. Biochem. Pharmacol. 28, 1297–1300.

    Google Scholar 

  • Rosenberg R. S., Zepelin H., and Rechtschaffen A. (1979) Sleep in young and old rats. J. Gerontol. 34, 525–532.

    PubMed  CAS  Google Scholar 

  • Sattin A (1981) Adenosine as a Mediator of Antidepressant Treatment, in Chemisms in the Brain. (Rodnight R., Bachelard H S, and Stahl W. S, eds.) pp 265–275, Churchill-Livingston, Edinburgh

    Google Scholar 

  • Sattin A. and Rall T W. (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices Mol. Pharmacol. 6, 12–23

    Google Scholar 

  • Sattin A., Stone T. W, and Taylor D. A. (1978) Biochemical and electrophysiological studies with tricyclic antidepressants in rat and guinea pig cerebral cortex. Life Sci 23, 2321–2626.

    Google Scholar 

  • Sawynok J. (1983) Theophylline-induced potentiation of the anti-nociceptive action of baclofen. Brit J Pharmacol. 78, 353–357

    CAS  Google Scholar 

  • Sawynok J. and Jhamandas K. H. (1976) Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenine nucleotides, and morphine: antagonism by theophylline. J. Pharmacol Exp Ther 197, 379–390.

    PubMed  CAS  Google Scholar 

  • Schrader J., Rubio R., and Berne R. M. (1975) Inhibition of slow action potentials of guinea pig atria1 muscle by adenosine. A possible effect on Ca2+ influx J Mol. Cell. Cardiol 7, 427–433.

    PubMed  CAS  Google Scholar 

  • Schubert P. and Mitzdorf V. (1979) Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices. Brain Res. 172, 186–190

    PubMed  CAS  Google Scholar 

  • Schubert P., Komp W., and Kreutzberg G. W. (1979) Correlation of 5′-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus. Brain Res 168, 419–424.

    PubMed  CAS  Google Scholar 

  • Schwabe U., Kiffe H, Puchstein C., and Trost T (1979) Specific binding of [3H]adenosine to rat brain membranes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 313, 59–67.

    Google Scholar 

  • Schwabe U. and Trost T. (1980) Characterization of adenosine receptors in rat brain by (-)-[3H]-N6-phenylisopropyladenosine. Naunyn-Schmeideberg’s Arch. Pharmacol 313, 179–188.

    CAS  Google Scholar 

  • Scott T. G. (1967) The distribution of 5′-nucleotidases in the brain of the mouse J Comp Neural. 129, 97–113

    CAS  Google Scholar 

  • Segal M. (1982) Intracellular analysis of a postsynaptic action of adenosine in the rat hippocampus. Eur J Pharmacol. 79, 193–199

    PubMed  CAS  Google Scholar 

  • Shallaby I. A., Freedman S. B, and Miller R. J. (1983) The effect of organic calcium antagonists on release of [3H]dopamine from aggregate cultures of midbrain neurons. Soc. Neurosci. Abstr. 9, 565.

    Google Scholar 

  • Shimizu H., Tanaka S., and Kodama T. (1972) Adenosine kinase of mammalian brain: partial purification and its role for the uptake of adenosine. J. Neurochem 19, 687–698.

    PubMed  CAS  Google Scholar 

  • Shimizu H. (1979) Biochemical Characterization of Adenosine Receptors in the Brain, in Physiological and Regulatory Function of Adenosine and Adenine Nucleotides (Baer H. P and Drummond G I, eds ) pp. 243–248. Raven, New York.

    Google Scholar 

  • Siggins G. R. and Schubert P. (1981) Adenosine depression of hippocampal neurons in vitro an intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci. Lett 23, 55–60

    PubMed  CAS  Google Scholar 

  • Skolnick P. and Daly J. W (1974) The accumulation of adenosine 3′,5′-monophosphate in cerebral cortical slices of the quaking mouse, a neurological mutant. Brain Res. 73, 513–525.

    PubMed  CAS  Google Scholar 

  • Skolnick P. and Paul S M. (1981) The mechanism(s) of action of the benzodiazepines. Med. Res. Rev. 1, 3–22

    PubMed  CAS  Google Scholar 

  • Skolnick P., Lock K. C., Paul S. M., Marangos P. J,, Jones R., and Irmscher K. (1980) Increased benzodiazepine receptor number elicited in vitro by a novel purine EMD 28422 Eur. J. Pharmacol. 67, 179–186.

    PubMed  CAS  Google Scholar 

  • Smellie F. W, Davis C W, Daly J. W, and Wells J N. (1979) Alkylxanthines—inhibition of adenosine-elicited accumulation of cyclic-AMP in brain slices and of brain phosphodiesterase activity Life Sci. 24, 2475–2481

    PubMed  CAS  Google Scholar 

  • Snell P. H. and Snell C. R. (1983) [3H] Adenosine binding sites on 108CC15 neuroblastoma × glioma hybrid cell line and rat brain membranes. Neurochem. Int. 5, 245–249.

    PubMed  CAS  Google Scholar 

  • Snyder S. H (1985) Adenosine as a neuromodulator. Ann Rev Neurosci. 8, 103–124.

    PubMed  CAS  Google Scholar 

  • Snyder S. H., Katims J. J., Annau Z., Bruns R F., and Daly J. W. (1981) Adenosine receptors and behavioral actions of methylxanthines Proc. Natl. Acad. Sci. USA 78, 3260–3764.

    PubMed  CAS  Google Scholar 

  • Snyder S. H., Braas K. M., and Newby A. C (1984) Immunocytochemical localization of adenosine-containing neurons in rat brain. Proc. Intl. Life Sci Inst. Meeting. Mexico, June, 1984, in press

    Google Scholar 

  • Spencer D. G., Gherezghiher T., and Lal H. (1984) Inosine and N6-substituted adenosine analogs lack anxiolytic activity in the pentylenetetrazol discrimmation model of anxiety Drug Develop Res. 4, 201–206.

    CAS  Google Scholar 

  • Spignoli G., Pedata F., and Pepeu G. (1984) A1 and A2 adenosine receptors modulate acetylcholine relase from brain slices. Eur. J. Pharmacol. 97, 341–342.

    PubMed  CAS  Google Scholar 

  • Standaert F. G. and Dretchen K. L. (1979) Cyclic nucleotides and neuromuscular transmission. Fed. Proc 38, 2183–2192

    PubMed  CAS  Google Scholar 

  • Stone T. W. (1981) Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neurosci. 6, 523–525

    CAS  Google Scholar 

  • Stone T. W. (1983) Interaction of Adenosine with Other Agents, in Regulatoy Function of Adenosine (Berne R. M., Rall T. W., and Rubio R., eds ) pp. 467–477. Martinus Nijhoff, Boston.

    Google Scholar 

  • Stone T. W. (1985) Purines: Pharmacology and Physiological Roles MacMillan, London

    Google Scholar 

  • Stone T. W. and Taylor D. A. (1978) Clonidine as an adenosine agonist. J. Pharmacol. 30, 792–793.

    CAS  Google Scholar 

  • Stone T. W and Taylor D. A. (1979) Antidepressant drugs potentiate supression by adenosine of neuronal firing in rat cerebral cortex. Neurosci Lett. 11, 93–97

    PubMed  CAS  Google Scholar 

  • Sugrue M. F. (1981) Chronic antidepressant administration and adaptive changes in central monoaminergic systems, in Antidepressants Neurochemical, Behavioral, and Clinical Perspectives (Enna S. J., Malick J B., and Richelson E., eds ) pp. 13–30, Raven, New York.

    Google Scholar 

  • Sun M-C, McIlwain H., and Pull I (1976) The metabolism of adenine derivatives in different parts of the brain of the rat and their release from hypothalamic preparations in excitation. J Neurobiol 7, 109–122.

    PubMed  CAS  Google Scholar 

  • Thithapandha A., Maling H. M, and Gillette G. R (1972) Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentration. Proc. Soc. Exp. Biol. Med 139, 582–586.

    PubMed  CAS  Google Scholar 

  • Trams E. G and Lauter C. J. (1974) On the sidedness of plasma membrane enzymes. Biochem Biophys. Acta 345, 180–197.

    PubMed  CAS  Google Scholar 

  • Van Calker D., Muller M, and Hamprecht B. (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells Nature (Lond. ) 276, 839–841

    Google Scholar 

  • Van Calcker D., Muller M., and Hamprecht B. (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells J Neurochem. 33, 999–1005

    Google Scholar 

  • Vapaatalo H., Onken D., Neuvonen P., and Westerman E (1975) Stereo-specificity in some central and circulatory effects of phenylisopropyl-adenosine (PIA) Arnzeim Forsch 25, 407–410.

    CAS  Google Scholar 

  • Vellucci S. V and Webster R A. (1984) Antagonism of caffeine-induced seizures in mice by Ro 15-1788. Eur. J. Pharmacol. 97, 289–293.

    PubMed  CAS  Google Scholar 

  • Virus R. M., Baglajewski T, and Radulovacki M. (1984) [3H]-N6-(L-Phenylisopropyl) adenosine binding in brain from young and old rats. Neurobiol Aging 5, 61–62.

    PubMed  CAS  Google Scholar 

  • Wagner J. A. and Katz R. J. (1983) Purinergic control of anxiety. direct behavioral evidence in rat Neurosci Lett. 43, 333–337.

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Lai R. T., and Yoshlda H (1983) Increase of [3H]clonidine binding sites induced by adenosine receptor agonists in rat vas deferens in vitro. Eur J Pharmacol 86, 265–269

    Google Scholar 

  • Weller M (1977) Evidence for the presynaptic location of adenylate cyclase and the cyclic-AMP stimulated protein kinase which is bound to synaptic membranes Biochem Biophys. Acta 409, 350–345.

    Google Scholar 

  • White C, Lincoln C. A, and Pearce N W. (1980) Anxiety and muscle tension as consequences of caffeine withdrawal. Science 209, 1547–1548.

    PubMed  CAS  Google Scholar 

  • Williams M. (1981) Purinergic Receptors in Mammalian Brain. Characterization by Ligand Binding Techniques, in Chemisms in the Brain (Rodnight R., Bachelard H S., and Stahl W. S., eds ) pp. 88–99, Churchill-Livingstone, Edinburgh.

    Google Scholar 

  • Williams M. (1983) Anxioselective anxiolytics J Med Chem 26, 619–628.

    PubMed  CAS  Google Scholar 

  • Williams M. (1984a) Mammalian Central Adenosine Receptors, in Handbook of Neurochemistry. vol 6 (Lajtha A., ed.) pp 1–26, Plenum, New York.

    Google Scholar 

  • Williams M. (1984b) Adenosine—a selective neuromodulator in the CNS? Trends Neurosci 7, 164–168

    CAS  Google Scholar 

  • Williams M. and Risley E A. (1980a) Biochemical characterization of putative purinergic receptors by using 2-chloro-[3H]adenosine, a stable analog of adenosine. Proc. Natl. Acad Sci USA 77, 6892–6896.

    PubMed  CAS  Google Scholar 

  • Williams M., and Risley E. A. (1980b) Binding of 3H-adenyl-5′-imidodi-phosphate (AppNHp) to rat brain synaptic membranes. Fed. Proc 39, 1009.

    Google Scholar 

  • Williams M. and U’Prichard D. C. (1984) Drug discovery at the molecular level a decade of radioligand binding in retrospect. Ann. Rep. Med Chem. 19, 283–292

    CAS  Google Scholar 

  • Williams M. and Valentine H. (1985) Binding of [3H]cyclohexyladenosine (CHA) to adenosine recognition sites in guinea pig ileal membranes: comparison with binding in brain membranes, Neurosci. Lett. 57, 79–83.

    PubMed  CAS  Google Scholar 

  • Williams M. and Wood P. L. (1981) Effect of chronic chemical and surgical denervation on A-1 adenosine receptor density in rat brain. Pharmacologist 23, 184.

    Google Scholar 

  • Williams M., Risley E. A., and Huff J. R. (1981) Interaction of putative anxiolytic agents with central adenosine receptors Can. J Physiol Pharmacol. 59, 897–900.

    PubMed  CAS  Google Scholar 

  • Williams M., Risley E A., and Robinson J L. (1983) Chronic in vivo treatment with desmethylimipramine and mianserin does not alter adenosine A-1 radioligand binding in rat cortex. Neurosci. Lett. 35, 47–51

    PubMed  CAS  Google Scholar 

  • Wojcik W J. and Neff N H. (1982) Adenosine measurement by a rapid HPLC-fluorometric method: Induced change of adenosine content in regions of rat brain. J. Neurochem. 39, 280–282.

    PubMed  CAS  Google Scholar 

  • Wojcik W. J. and Neff N. H. (1983a) Adenosine A1 receptors are associated with cerebellar granule cells. J Neurochem. 41, 759–763.

    PubMed  CAS  Google Scholar 

  • Wojcik W. J. and Neff N. H. (1983b) Differential location of adenosine A1 and A2 receptors in strratum Neurosci. Lett. 41, 55–60.

    PubMed  CAS  Google Scholar 

  • Wojcik W. J. and Neff N. H (1983c) Location of adenosine release and adenosine A2 receptors to rat striatal neurons Life Sci. 33, 755–763

    PubMed  CAS  Google Scholar 

  • Wooten F. G., Thoa N. B., Kopin I. J., and Axelrod J. (1973) Enhanced release of dopamme-β-hydroxylase and norepinephrine from sympathetic nerves by dibutyryl cychc adenosine monophosphate and theophylline. Mol. Pharmacol. 9, 178–183.

    PubMed  CAS  Google Scholar 

  • Wu P H. and Coffin V. L (1984) Up-regulation of brain [3H]diazepam binding sites in chronic caffeine-treated rats. Brain Res. 294, 186–189.

    PubMed  CAS  Google Scholar 

  • Wu P. H. and Phillis J. W. (1982) Adenosine receptors in rat brain membranes: characterization of high affinity binding of [3H]-2-chloroadenosine Int. J Biochem 14, 399–404.

    PubMed  CAS  Google Scholar 

  • Wu P. H., Phillis J. W, Balls K., and Rinaldi B. (1980) Specific binding of 2-[3H]-chloroadenosine to rat brain cortical membranes Can J Physiol. Pharmacol. 58, 576–579.

    PubMed  CAS  Google Scholar 

  • Wybenga M. P., Murphy M. G., and Robertson H. A. (1981) Rapid changes in cerebellar adenosine receptors followmg experimental seizures. Eur J. Pharmacol. 75, 79–80.

    PubMed  CAS  Google Scholar 

  • Yarbrough G.G. and McGuffin-Clineschmidt J. (1981) In viva behavioral assessment of central nervous system purinergic receptors. Eur. J. Pharmacol. 76, 137–144.

    PubMed  CAS  Google Scholar 

  • Yeung S. M. H. and Green R D. (1983) Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5′-guanylylimidodiphosphate or N-ethylmaleimide. J. Biol. Chem. 258, 2334–2339.

    PubMed  CAS  Google Scholar 

  • Yeung S M. H. and Green R. D. (1984) [3H]-5′-N-ethylcarboxamide adenosine binds to both Ra and Ri adenosine receptors in rat striatum. Naunyn-Schmiedeberg’s Arch. Pharmacol 325, 218–225

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan A. Boulton Glen B. Baker Pavel D. Hrdina

Rights and permissions

Reprints and permissions

Copyright information

© 1986 The Humana Press Inc.

About this protocol

Cite this protocol

Williams, M. (1986). Purinergic Receptors in the CNS. In: Boulton, A.A., Baker, G.B., Hrdina, P.D. (eds) Receptor Binding. Neuromethods, vol 4. Humana Press. https://doi.org/10.1385/0-89603-078-4:365

Download citation

  • DOI: https://doi.org/10.1385/0-89603-078-4:365

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-078-7

  • Online ISBN: 978-1-59259-609-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics