Skip to main content

Method for the Generation of Antibodies Specific for Site and Posttranslational Modifications

  • Protocol
  • First Online:
Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1131))

Abstract

Protein phosphorylation plays critical roles in multiple aspects of cellular events. Site- and phosphorylation state-specific antibodies are indispensable to analyze spatially and temporally distribution of protein phosphorylation in cells. Such information provides some clues of its biological function. Here, we describe a strategy to design a phosphopeptide as an antigen for a site- and phosphorylation state-specific antibody. Importantly, this strategy is also applicable to the production of other types of antibodies, which specifically recognize the site-specific modification, such as acetylation, methylation, and proteolysis. This protocol also focuses on the screening for monoclonal version of a site- and phosphorylation state-specific antibody.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82(2–3):111–121

    Article  CAS  PubMed  Google Scholar 

  2. Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258(5082):607–614

    Article  CAS  PubMed  Google Scholar 

  3. Nurse P (2000) A long twentieth century of the cell cycle and beyond. Cell 100(1):71–78

    Article  CAS  PubMed  Google Scholar 

  4. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439

    Article  CAS  PubMed  Google Scholar 

  5. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Article  CAS  PubMed  Google Scholar 

  6. Boyle WJ, van der Geer P, Hunter T (1991) Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol 201:110–149

    Article  CAS  PubMed  Google Scholar 

  7. Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A 80(19):6126–6130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nishizawa K, Yano T, Shibata M, Ando S, Saga S, Takahashi T, Inagaki M (1991) Specific localization of phosphointermediate filament protein in the constricted area of dividing cells. J Biol Chem 266(5):3074–3079

    CAS  PubMed  Google Scholar 

  9. Yano T, Taura C, Shibata M, Hirono Y, Ando S, Kusubata M, Takahashi T, Inagaki M (1991) A monoclonal antibody to the phosphorylated form of glial fibrillary acidic protein: application to a non-radioactive method for measuring protein kinase activities. Biochem Biophys Res Commun 175(3):1144–1151

    Article  CAS  PubMed  Google Scholar 

  10. Matsuoka Y, Nishizawa K, Yano T, Shibata M, Ando S, Takahashi T, Inagaki M (1992) Two different protein kinases act on a different time schedule as glial filament kinases during mitosis. EMBO J 11(8):2895–2902

    CAS  PubMed  Google Scholar 

  11. Nagata K, Izawa I, Inagaki M (2001) A decade of site- and phosphorylation state-specific antibodies: recent advances in studies of spatiotemporal protein phosphorylation. Genes Cells 6(8):653–664

    Article  CAS  PubMed  Google Scholar 

  12. Izawa I, Inagaki M (2006) Regulatory mechanisms and functions of intermediate filaments: a study using site- and phosphorylation state-specific antibodies. Cancer Sci 97(3):167–174. doi:10.1111/j.1349-7006.2006.00161.x

    Article  CAS  PubMed  Google Scholar 

  13. Goto H, Inagaki M (2007) Production of a site- and phosphorylation state-specific antibody. Nat Protoc 2(10):2574–2581. doi:10.1038/nprot.2007.374

    Article  CAS  PubMed  Google Scholar 

  14. Czernik AJ, Girault JA, Nairn AC, Chen J, Snyder G, Kebabian J, Greengard P (1991) Production of phosphorylation state-specific antibodies. Methods Enzymol 201:264–283

    Article  CAS  PubMed  Google Scholar 

  15. White DA, Belyaev ND, Turner BM (1999) Preparation of site-specific antibodies to acetylated histones. Methods San Diego, Calif 19(3):417–424

    Article  CAS  PubMed  Google Scholar 

  16. Perez-Burgos L, Peters AH, Opravil S, Kauer M, Mechtler K, Jenuwein T (2004) Generation and characterization of methyl-lysine histone antibodies. Methods Enzymol 376:234–254

    Article  CAS  PubMed  Google Scholar 

  17. Howell BJ, McEwen BF, Canman JC, Hoffman DB, Farrar EM, Rieder CL, Salmon ED (2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 155(7):1159–1172. doi:10.1083/jcb.200105093

    Article  CAS  PubMed  Google Scholar 

  18. Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M (2010) 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J 29(16):2802–2812. doi: 10.1038/emboj. 2010.157, emboj 2010157 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Hayashi K, Yonemura S, Matsui T, Tsukita S (1999) Immunofluorescence detection of ezrin/radixin/moesin (ERM) proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues. J Cell Sci 112(Pt 8):1149–1158

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology, Japan; by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science, Japan; by a Grant-in-aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare, Japan; by the Uehara Memorial Foundation; by the Astellas Foundation for Research on Metabolic Disorders; by the Naito Foundation; by the Daiichi-Sankyo Foundation of Life Science; and by the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Goto, H., Inagaki, M. (2014). Method for the Generation of Antibodies Specific for Site and Posttranslational Modifications. In: Ossipow, V., Fischer, N. (eds) Monoclonal Antibodies. Methods in Molecular Biology, vol 1131. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-992-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-992-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-991-8

  • Online ISBN: 978-1-62703-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics