Skip to main content

Determining Protein Phosphorylation Status Using Antibody Arrays and Phos-Tag Biotin

  • Protocol
  • First Online:
Antibody Arrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2237))

Abstract

We describe here a standard protocol for determining the phosphorylation status of protein multiplexes using antibody arrays and a biotinylated Phos-tag with a dodeca(ethylene glycol) spacer (Phos-tag Biotin). The procedure is based on an antibody microarray technique used in conjunction with an enhanced chemiluminescence system, and it permits the simultaneous and highly sensitive detection of multiple phosphoproteins in a cell lysate. By using this procedure, we have demonstrated the quantitative detection of the entire phosphorylation status of a target protein involved in intracellular signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh V, Ram M, Kumar R et al (2017) Phosphorylation: implications in cancer. Protein J 36:1–16

    Article  CAS  Google Scholar 

  2. Liu J, Qian C, Cao X (2016) Post-translational modification control of innate immunity. Immunity 45:15–30

    Article  Google Scholar 

  3. Wang Y, Mandelknow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:5–21

    Article  Google Scholar 

  4. Kinoshita E, Takahashi M, Takeda H et al (2004) Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans 8:1189–1193

    Article  Google Scholar 

  5. Kinoshita E, Yamada A, Takeda H et al (2005) Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J Sep Sci 28:155–162

    Article  CAS  Google Scholar 

  6. Kinoshita-Kikuta E, Kinoshita E, Yamada A et al (2006) Enrichment of phosphorylated proteins from cell lysate using a novel phosphate-affinity chromatography at physiological pH. Proteomics 6:5088–5095

    Article  CAS  Google Scholar 

  7. Kinoshita-Kikuta E, Kinoshita E, Koike T (2009) Phos-tag beads as an immunoblotting enhancer for selective detection of phosphoproteins in cell lysates. Anal Biochem 389:83–85

    Article  CAS  Google Scholar 

  8. Kinoshita-Kikuta E, Yamada A, Inoue C et al (2010) A novel phosphate-affinity bead with immobilized Phos-tag for separation and enrichment of phosphopeptides and phosphoproteins. J Integr OMICS 1:157–169

    Google Scholar 

  9. Tsunehiro M, Meki Y, Matsuoka K et al (2013) A Phos-tag-based magnetic-bead method for rapid and selective separation of phosphorylated biomolecules. J Chromatogr B Anal Technol Biomed Life Sci 925:86–94

    Article  CAS  Google Scholar 

  10. Yuan ET, Ino Y, Kawaguchi M et al (2017) A Phos-tag-based micropipette-tip method for rapid and selective enrichment of phosphopeptides. Electrophoresis 38:2447–2455

    Article  CAS  Google Scholar 

  11. Kinoshita-Kikuta E, Aoki Y, Kinoshita E et al (2007) Label-free kinase profiling using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell Proteomics 6:356–366

    Article  CAS  Google Scholar 

  12. Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2008) Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994–3003

    Article  CAS  Google Scholar 

  13. Kinoshita E, Kinoshita-Kikuta E, Matsubara M et al (2009) Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes. Electrophoresis 30:550–559

    Article  CAS  Google Scholar 

  14. Kinoshita E, Kinoshita-Kikuta E, Ujihara H et al (2009) Mobility shift detection of phosphorylation on large proteins using a Phos-tag SDS-PAGE gel strengthened with agarose. Proteomics 9:4098–4101

    Article  CAS  Google Scholar 

  15. Kinoshita E, Kinoshita-Kikuta E, Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4:1513–1521

    Article  CAS  Google Scholar 

  16. Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323

    Article  CAS  Google Scholar 

  17. Kinoshita E, Kinoshita-Kikuta E, Koike T (2012) Phos-tag SDS-PAGE systems for phosphorylation profiling of proteins with a wide range of molecular masses under neutral pH conditions. Proteomics 12:192–202

    Article  CAS  Google Scholar 

  18. Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) Separation and identification of four distinct serine-phosphorylation states of ovalbumin by Phos-tag affinity electrophoresis. Electrophoresis 33:849–855

    Article  CAS  Google Scholar 

  19. Kinoshita-Kikuta E, Kinoshita E, Koike T (2012) A laborsaving, timesaving, and more reliable strategy for separation of low-molecular-mass phosphoproteins in Phos-tag affinity electrophoresis. Int J Chem (Mumbai, India) 4(5):1–8

    CAS  Google Scholar 

  20. Kinoshita E, Kinoshita-Kikuta E, Shiba A et al (2014) Profiling of protein thiophosphorylation by Phos-tag affinity electrophoresis: evaluation of adenosine 5′-O-(3-thiotriphosphate) as a phosphoryl donor in protein kinase reactions. Proteomics 14:668–679

    Article  CAS  Google Scholar 

  21. Kinoshita-Kikuta E, Kinoshita E, Koike T (2014) Identification of two phosphorylated species of β-catenin involved in the ubiquitin-proteasome pathway by using two-dimensional Phos-tag affinity electrophoresis. J Electrophoresis 58:1–4

    Article  CAS  Google Scholar 

  22. Kinoshita-Kikuta E, Kinoshita E, Matsuda A, Koike T (2014) Tips on improving the efficiency of electrotransfer of target proteins from Phos-tag SDS-PAGE gel. Proteomics 14:2437–2442

    Article  CAS  Google Scholar 

  23. Kinoshita-Kikuta E, Kinoshita E, Eguchi Y et al (2015) Functional characterization of the receiver domain for phosphorelay control in hybrid sensor kinases. PLoS One 10:e0132598

    Article  Google Scholar 

  24. Sugiyama Y, Katayama S, Kameshita I et al (2015) Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE. MethodsX 2:469–474

    Article  Google Scholar 

  25. Kinoshita-Kikuta E, Kinoshita E, Eguchi Y, Koike T (2016) Validation of cis and trans modes in multistep phosphotransfer signaling of bacterial tripartite sensor kinases by using Phos-tag SDS-PAGE. PLoS One 11:e0148294

    Article  Google Scholar 

  26. Kinoshita E, Kinoshita-Kikuta E, Kubota Y et al (2016) A Phos-tag SDS-PAGE method that effectively uses phosphoproteomic data for profiling the phosphorylation dynamics of MEK1. Proteomics 16:1825–1836

    Article  CAS  Google Scholar 

  27. Kinoshita E, Kinoshita-Kikuta E, Karata K et al (2017) Specific glutamic acid residues in targeted proteins induce exaggerated retardations in Phos-tag SDS-PAGE migration. Electrophoresis 38:1139–1146

    Article  CAS  Google Scholar 

  28. Kinoshita-Kikuta E, Kinoshita E, Ueda S et al (2019) Increase in constitutively active MEK1 species by introduction of MEK1 mutations identified in cancers. Biochim Biophys Acta Proteins Proteomics 1867:62–70

    Article  CAS  Google Scholar 

  29. Uezato Y, Kameshita I, Morisawa K et al (2019) A method for profiling the phosphorylation state of tyrosine protein kinases. Biochim Biophys Acta Proteins Proteomics 1867:71–75

    Article  CAS  Google Scholar 

  30. Kinoshita E, Kinoshita-Kikuta E, Takiyama K et al (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    Article  CAS  Google Scholar 

  31. Inamori K, Kyo M, Nishiya Y et al (2005) Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule. Anal Chem 77:3979–3985

    Article  CAS  Google Scholar 

  32. Nakanishi T, Ando E, Furuta M et al (2007) Identification on membrane and characterization of phosphoproteins using an alkoxide-bridged dinuclear metal complex as a phosphate binding tag molecule. J Biomol Tech 18:278–286

    PubMed  PubMed Central  Google Scholar 

  33. Kinoshita E, Kinoshita-Kikuta E, Sugiyama Y et al (2012) Highly sensitive detection of protein phosphorylation by using improved Phos-tag Biotin. Proteomics 12:932–937

    Article  CAS  Google Scholar 

  34. Kinoshita E, Kinoshita-Kikuta E, Koike T (2013) Phos-tag-based microarray techniques advance phosphoproteomic. Proteomics Bioinf S6. https://doi.org/10.4172/jpb.S6-008

  35. Kinoshita E, Kinoshita-Kikuta E, Koike T (2013) Sandwich assay for phosphorylation of protein multiplexes by using antibodies and Phos-tag. Anal Biochem 438:104–106

    Article  CAS  Google Scholar 

  36. Kinoshita E, Kinoshita-Kikuta E, Koike T (2015) Advances in Phos-tag-based methodologies for separation and detection of the phosphoproteome. Biochim Biophys Acta Proteins Proteomics 1854:601–608

    Article  CAS  Google Scholar 

  37. Kinoshita-Kikuta E, Kinoshita E, Koike T (2016) Phosphopeptide detection with biotin-labeled Phos-tag. Method Mol Biol 1355:17–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by KAKENHI Grants 19K07147 to E.K., 18K06596 to E.K.-K., and 17K08237 to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Kinoshita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kinoshita, E., Kinoshita-Kikuta, E., Koike, T. (2021). Determining Protein Phosphorylation Status Using Antibody Arrays and Phos-Tag Biotin. In: Whittaker, K.C., Huang, RP. (eds) Antibody Arrays. Methods in Molecular Biology, vol 2237. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1064-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1064-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1063-3

  • Online ISBN: 978-1-0716-1064-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics