Skip to main content

High-Level Cell-Free Production of Membrane Proteins with Nanodiscs

  • Protocol
  • First Online:
Cell-Free Protein Synthesis

Abstract

This chapter addresses two major bottlenecks in cell-free membrane protein production. Firstly, we describe the optimization of expression templates for obtaining membrane proteins in preparative scales. We present details for a newly established tag variation screen providing high success rates in improving expression efficiencies while having only minimal impacts on the target protein structure. Secondly, we present protocols for the efficient co-translational insertion of membrane proteins into defined lipid bilayers. We describe the production of nanodiscs and their implementation into cell-free expression reactions for the co-translational reconstitution of membrane proteins. In addition we give guidelines for the loading of nanodiscs with different lipids in order to systematically analyze effects of lipids on the translocation, functional folding, and stability of cell-free expressed membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Junge F, Haberstock S, Roos C et al (2010) Advances in cell-free protein synthesis for the functional and structural analysis of membrane proteins. N Biotechnol 28:262–271

    Article  PubMed  Google Scholar 

  2. Spirin AS, Baranov VI, Ryabova LA et al (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  CAS  PubMed  Google Scholar 

  3. Kigawa T, Yokoyama S (1991) A continuous cell-free protein synthesis system for coupled transcription–translation. J Biochem 110:166–168

    CAS  PubMed  Google Scholar 

  4. Junge F, Luh LM, Proverbio D et al (2010) Modulation of G-protein coupled receptor sample quality by modified cell-free expression protocols: a case study of the human endothelin A receptor. J Struct Biol 172:94–106

    Article  CAS  PubMed  Google Scholar 

  5. Ma Y, Muench D, Schneider T et al (2011) Preparative scale cell-free production and quality optimization of MraY homologues in different expression modes. J Biol Chem 286:38844–38853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yang JP, Cirico T, Katzen F et al (2011) Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs. BMC Biotechnol 11:57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lyukmanova EN, Shenkarev ZO, Khabibullina NF et al (2012) Lipid–protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes. Biochem Biophys Acta 1818:349–358

    Article  CAS  PubMed  Google Scholar 

  8. Katzen F (2008) Cell-free protein expression of membrane proteins using nanolipoprotein particles. Biotechniques 45:190

    Article  CAS  PubMed  Google Scholar 

  9. Kai L, Roos C, Haberstock S et al (2012) Systems for the cell-free synthesis of proteins. Methods Mol Biol 800:201–225

    Article  CAS  PubMed  Google Scholar 

  10. Glück JM, Koenig BW, Willbold D (2011) Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal Biochem 408:46–52

    Article  PubMed  Google Scholar 

  11. Borch J, Roepstorff P, Møller-Jensen J (2011) Nanodisc-based co-immunoprecipitation for mass spectrometric identification of membrane-interacting proteins. Mol Cell Proteomics 10:O110.006775

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kobashigawa Y, Harada K, Yoshida N et al (2011) Phosphoinositide-incorporated lipid-protein nanodiscs: a tool for studying protein–lipid interactions. Anal Biochem 410:77–83

    Article  CAS  PubMed  Google Scholar 

  13. Raschle T, Hiller S, Yu TY et al (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777–17779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Denisov I, Grinkova Y, Lazarides A et al (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 24:3477–3487

    Article  Google Scholar 

  15. Schneider B, Junge F, Shirokov VA et al (2010) Membrane protein expression in cell-free systems. Methods Mol Biol 601:165–186

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Wang E, Wang Y (1999) A modified procedure for fast purification of T7 RNA polymerase. Protein Expr Purif 16:355–358

    Article  CAS  PubMed  Google Scholar 

  17. Haberstock S, Roos C, Hoevels Y et al (2012) A systematic approach to increase the efficiency of membrane protein production in cell-free expression systems. Protein Expr Purif 82:308–316

    Article  CAS  PubMed  Google Scholar 

  18. De Smit MH, van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672

    Article  PubMed Central  PubMed  Google Scholar 

  19. Grinkova Y, Denisov I, Sligar G (2010) Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng Des Sel 23:843–848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Zocher M, Roos C, Wegmann S et al (2011) Single-molecule force spectroscopy from nanodiscs: an assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano 6:961–971

    Article  PubMed  Google Scholar 

  21. Roos C, Zocher M, Müller D et al (2012) Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with E. coli MraY translocase. Biochim Biophys Acta 1818(12):3098–3106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Collaborative Research Center (SFB) 807 of the German Research Foundation (DFG). We further thank the European Drug Initiative on Channels and Transporters (EDICT), contract number HEALTH-F4-2007-201924; the European initiative on Structural Biology of Membrane Proteins (SBMP), contract number PITN-GA-2008-211800; and the NIH (grant number U54 GM094608) for funding. We further thank Oliver Ernst for helpful advice and Vladimir Shirokov for critical discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roos, C. et al. (2014). High-Level Cell-Free Production of Membrane Proteins with Nanodiscs. In: Alexandrov, K., Johnston, W. (eds) Cell-Free Protein Synthesis. Methods in Molecular Biology, vol 1118. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-782-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-782-2_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-781-5

  • Online ISBN: 978-1-62703-782-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics