Skip to main content

Transcriptomic Analysis of Staphylococcus aureus Using Microarray and Advanced Next-Generation RNA-seq Technologies

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1085))

Abstract

The transcriptome has shown tremendous potential for the comprehensive investigation of gene expression profiles and transcriptional levels in comparative biology, the identification of regulatory mechanism of transcriptional regulators, and the evaluation of target gene for developing new chemotherapeutic agents, vaccine, and diagnostic methods. The traditional microarray and advanced next-generation RNA sequencing technologies (RNA-seq) provide powerful and effective tools for the determination of the transcriptome of bacterial cells. In this chapter, we provide a detailed protocol for scientists who want to investigate gene expression profiles by performing microarray and/or RNA-seq analysis, including different RNA purification methods, mRNA enrichment, decontamination, cDNA synthesis, fragmentation, biotin labeling for hybridization using Affymetrix Staphylococcus aureus chips, quantitative real-time reverse transcription PCR, and RNA-seq data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramsay G (1998) DNA chips: state-of-the art. Nat Biotechnol 16:40–44

    Article  PubMed  CAS  Google Scholar 

  2. Chin KV, Kong A (2002) Application of DNA microarrays in pharmacogenomics and toxicogenomics. Pharm Res 19:1173–1178

    Article  Google Scholar 

  3. Dunman P, Murphy E, Haney S et al (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183:7341–7353

    Article  PubMed  CAS  Google Scholar 

  4. Liang X, Zheng L, Landwehr C et al (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187:5486–5492

    Article  PubMed  CAS  Google Scholar 

  5. Liang X, Yu C, Sun J et al (2006) Inactivation of a two-component signal transduction system, SaeRS, eliminates adherence and attenuates virulence of Staphylococcus aureus. Infect Immun 74:4655–4665

    Article  PubMed  CAS  Google Scholar 

  6. Yan M, Hall JW, Yang J et al (2012) The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus. PLoS One 7(11):e50608

    Article  PubMed  CAS  Google Scholar 

  7. Sun F, Ji Q, Jones MB et al (2012) AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J Am Chem Soc 134:305–314

    Article  PubMed  CAS  Google Scholar 

  8. Bischoff M, Dunman P, Kormanec J et al (2004) Microarray-based analysis of the Staphylococcus aureus σ regulon. J Bacteriol 186:4085–4099

    Article  PubMed  CAS  Google Scholar 

  9. Saïd-Salim B, Dunman P, McAleese F et al (2003) Global regulation of Staphylococcus aureus genes by rot. J Bacteriol 185:610–619

    Article  PubMed  Google Scholar 

  10. Luong T, Dunman P, Murphy E et al (2006) Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol 188:1899–1910

    Article  PubMed  CAS  Google Scholar 

  11. Bammert G, Fostel J (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alternations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265

    Article  PubMed  CAS  Google Scholar 

  12. Gmuender H, Kuratli K, Di Padova K et al (2001) Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res 11:28–42

    Article  PubMed  CAS  Google Scholar 

  13. Khodursky A, Peter B, Schmid M et al (2000) Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc Natl Acad Sci USA 97:9419–9424

    Article  PubMed  CAS  Google Scholar 

  14. Wilson M, DeRisi J, Kristensen H et al (1999) Exploring drug-induced alternations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96:12833–12838

    Article  PubMed  CAS  Google Scholar 

  15. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  16. Pinto AC, Melo-Barbosa HP, Miyoshi A et al (2011) Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res 10:1707–1718

    Article  PubMed  CAS  Google Scholar 

  17. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  18. Teng X, Xiao H (2009) Perspectives of DNA microarray and next-generation DNA sequencing technologies. Sci China C Life Sci 52:7–16

    Article  PubMed  CAS  Google Scholar 

  19. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624

    Article  PubMed  CAS  Google Scholar 

  20. Beaume M, Hernandez D, Docquier M et al (2011) Orientation and expression of methicillin-resistant Staphylococcus aureus small RNAs by direct multiplexed measurements using the nCounter of NanoString technology. J Microbiol Methods 84:327–334

    Article  PubMed  CAS  Google Scholar 

  21. Wilhelm J, Pingoud A (2003) Real-time polymerase chain reaction. Chembiochem 4:1120–1128

    Article  PubMed  CAS  Google Scholar 

  22. Arya M, Shergill IS, Williamson M et al (2005) Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn 5:209–219

    Article  PubMed  CAS  Google Scholar 

  23. Roberts A, Trapnell C, Donaghey J et al (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:R22

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ying Zhang at the Minnesota Supercomputing Institute for the assistance with data analysis and Jeffrey Hall for critical reading and suggestions. This work was supported by grant AI057451 from the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lei, T., Becker, A., Ji, Y. (2014). Transcriptomic Analysis of Staphylococcus aureus Using Microarray and Advanced Next-Generation RNA-seq Technologies. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 1085. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-664-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-664-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-663-4

  • Online ISBN: 978-1-62703-664-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics