Skip to main content
Log in

Perspectives of DNA microarray and next-generation DNA sequencing technologies

  • Special Topics
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research, in revealing both the structural and functional characteristics of genomes. In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics, systems biology and pharmacogenomics. The next-generation DNA sequencing method was first introduced by the 454 Company in 2003, immediately followed by the establishment of the Solexa and Solid techniques by other biotech companies. Though it has not been long since the first emergence of this technology, with the fast and impressive improvement, the application of this technology has extended to almost all fields of genomics research, as a rival challenging the existing DNA microarray technology. This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fodor S P, Read J L, Pirrung M C, et al. Light-directed, spatially addressable parallel chemical synthesis. Science, 1991, 251(4995): 767–773 1990438, 10.1126/science.1990438, 1:CAS:528:DyaK3MXitVOktL8%3D

    Article  PubMed  CAS  Google Scholar 

  2. Pease A C, Solas D, Sullivan E J, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA, 1994, 91(11): 5022–5026 8197176, 10.1073/pnas.91.11.5022, 1:CAS:528:DyaK2cXltVSktrc%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Service R F. Microchip arrays put DNA on the spot. Science, 1998, 282(5388): 396–399 9841392, 10.1126/science.282.5388.396, 1:CAS:528:DyaK1cXmslarurg%3D

    Article  PubMed  CAS  Google Scholar 

  4. Beattie W G, Meng L, Turner S L, et al. Hybridization of DNA targets to glass-tethered oligonucleotide probes. Mol Biotechnol, 1995, 4(3): 213–225 8680928, 10.1007/BF02779015, 1:CAS:528:DyaK28XosFantA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. Cheng J, Shoffner, M A, Hvichia G E, et al. Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips. Nucleic Acids Res, 1996, 24(2): 380–385 8628666, 10.1093/nar/24.2.380, 1:CAS:528:DyaK28Xps1agsg%3D%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. McGall G, Labadie J, Brock P. et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists?. Proc Natl Acad Sci USA, 1996, 93(24): 13555–13560 8942972, 10.1073/pnas.93.24.13555, 1:CAS:528:DyaK28Xnt1Ghsbs%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Gilles P N, Wu D J, Foster C B, et al. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat Biotechnol, 1999, 17(4): 365–370 10207885, 10.1038/7921, 1:CAS:528:DyaK1MXitl2ht7g%3D

    Article  PubMed  CAS  Google Scholar 

  8. Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235): 467–470 7569999, 10.1126/science.270.5235.467, 1:CAS:528:DyaK2MXovVersLk%3D

    Article  PubMed  CAS  Google Scholar 

  9. Pirrung M C. Spatially Addressable Combinatorial Libraries. Chem Rev, 1997, 97(2): 473–488 11848879, 10.1021/cr960013o, 1:CAS:528:DyaK2sXhslagtLo%3D

    Article  PubMed  CAS  Google Scholar 

  10. Singh-Gasson S, Green R D, Yue Y, et al. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol, 1999, 17(10): 974–978 10504697, 10.1038/13664, 1:CAS:528:DyaK1MXmvVels7s%3D

    Article  PubMed  CAS  Google Scholar 

  11. Xiao P F, He N Y, Liu Z C, et al. In situ synthesis of oligonucleotide arrays by using soft lithography. Nanotechnology, 2002, 13:756–762 10.1088/0957-4484/13/6/312, 1:CAS:528:DC%2BD3sXhtVGhtrY%3D

    Article  CAS  Google Scholar 

  12. Xu X-R, Huang J, Xu Z-G, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA, 2001, 98(26): 5 10.1073/pnas.241522398

    Article  Google Scholar 

  13. Zheng P Z, Wang K K, Zhang Q Y, et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA, 2005, 102(21): 7653–7658 15894607, 10.1073/pnas.0502825102, 1:CAS:528:DC%2BD2MXkslOnu7Y%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Huang W, He Y, Wang H, et al. Linkage disequilibrium sharing and haplotype-tagged SNP portability between populations. Proc Natl Acad Sci USA, 2006, 103(5): 1418–1421 16432195, 10.1073/pnas.0510360103, 1:CAS:528:DC%2BD28Xhs1Gnsrg%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Hua Y J, Tu K, Tang Z Y, et al. Comparison of normalization methods with microRNA microarray. Genomics, 2008, 92(2): 122–128 18514480, 10.1016/j.ygeno.2008.04.002, 1:CAS:528:DC%2BD1cXosValur8%3D

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Huang J, Jia S, et al. SAGE tag based cDNA microarray analysis during larval to pupal development and isolation of novel cDNAs in Bombyx mori. Genomics, 2007, 90(3): 372–379 17582738, 10.1016/j.ygeno.2007.05.005, 1:CAS:528:DC%2BD2sXosFegsrw%3D

    Article  PubMed  CAS  Google Scholar 

  17. Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun, 2007, 354(2): 585–590 17254555, 10.1016/j.bbrc.2007.01.022, 1:CAS:528:DC%2BD2sXhtlOgtb4%3D

    Article  PubMed  CAS  Google Scholar 

  18. Li R Y, Zhang Q H, Liu Z, et al. Effect of short-term and long-term fasting on transcriptional regulation of metabolic genes in rat tissues. Biochem Biophys Res Commun, 2006, 344(2): 562–570 16620784, 10.1016/j.bbrc.2006.03.155, 1:CAS:528:DC%2BD28XjvFWgurc%3D

    Article  PubMed  CAS  Google Scholar 

  19. Ma X H, Hu S J, Ni H, et al. Serial analysis of gene expression in mouse uterus at the implantation site. J Biol Chem, 2006, 281(14): 9351–9360 16434403, 10.1074/jbc.M511512200, 1:CAS:528:DC%2BD28XjtVSrtrg%3D

    Article  PubMed  CAS  Google Scholar 

  20. Huang J, Sheng H H, Shen T, et al. Correlation between genomic DNA copy number alterations and transcriptional expression in hepatitis B virus-associated hepatocellular carcinoma. FEBS Lett, 2006, 580(15): 3571–3581 16750200, 10.1016/j.febslet.2006.05.032, 1:CAS:528:DC%2BD28XmtVOmsbo%3D

    Article  PubMed  CAS  Google Scholar 

  21. Xu C, Zheng P, Shen S, et al. NMR structure and regulated expression in APL cell of human SH3BGRL3. FEBS Lett, 2005, 579(13): 2788–2794 15907482, 10.1016/j.febslet.2005.04.011, 1:CAS:528:DC%2BD2MXkt1Gisb8%3D

    Article  PubMed  CAS  Google Scholar 

  22. Brazma A, Hingamp P, Quackenbush J, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet, 2001, 29(4): 365–371 11726920, 10.1038/ng1201-365, 1:CAS:528:DC%2BD3MXovFamurw%3D

    Article  PubMed  CAS  Google Scholar 

  23. Edgar R, Barrett T. NCBI GEO standards and services for microarray data. Nat Biotechnol, 2006, 24(12): 1471–1472 17160034, 10.1038/nbt1206-1471, 1:CAS:528:DC%2BD28Xht12gtb%2FK

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Ji H, Davis, R W. Data quality in genomics and microarrays. Nat Biotechnol, 2006, 24(9): 1112–1113 16964224, 10.1038/nbt0906-1112, 1:CAS:528:DC%2BD28XptlSls7c%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Tong W, Lucas A B, Shippy R, et al. Evaluation of external RNA controls for the assessment of microarray performance. Nat Biotechnol, 2006, 24(9): 1132–1139 16964227, 10.1038/nbt1237, 1:CAS:528:DC%2BD28XptlSlsLY%3D

    Article  PubMed  CAS  Google Scholar 

  26. Patterson T A, Lobenhofer E K, Fulmer-Smentek S B, et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol, 2006, 24(9): 1140–1150 16964228, 10.1038/nbt1242, 1:CAS:528:DC%2BD28XptlSlsbw%3D

    Article  PubMed  CAS  Google Scholar 

  27. Canales R D, Luo Y, Willey J C, et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol, 2006, 24(9): 1115–1122 16964225, 10.1038/nbt1236, 1:CAS:528:DC%2BD28XptlSlsLk%3D

    Article  PubMed  CAS  Google Scholar 

  28. Shippy R, Fulmer-Smentek S, Jensen R V, et al. Using RNA sample titrations to assess microarray platform performance and normalization techniques. Nat Biotechnol, 2006, 24(9): 1123–1131 16964226, 10.1038/nbt1241, 1:CAS:528:DC%2BD28XptlSlsb8%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Shi L, Reid L H, Jones W D, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol, 2006, 24(9): 1151–1161 16964229, 10.1038/nbt1239, 1:CAS:528:DC%2BD28XptlSlsb4%3D

    Article  PubMed  CAS  Google Scholar 

  30. Guo L, Lobenhofer E K, Wang, C, et al. Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat Biotechnol, 2006, 24(9): 1162–1169 17061323, 10.1038/nbt1238, 1:CAS:528:DC%2BD28XptlSlsLc%3D

    Article  PubMed  CAS  Google Scholar 

  31. Grant G R, Manduchi E, Stoeckert C J Jr. Analysis and management of microarray gene expression data. Curr Protoc Mol Biol, 2007, Chapter 19: Unit 19 16

  32. Stoeckert C J Jr, Causton H C, Ball C A. Microarray databases: standards and ontologies. Nat Genet, 2002, 32Suppl: 469–473 12454640, 10.1038/ng1028, 1:CAS:528:DC%2BD38XovFyqsrc%3D

    Article  PubMed  CAS  Google Scholar 

  33. Cordero F, Botta M, Calogero R A. Microarray data analysis and mining approaches. Brief Funct Genomic Proteomic, 2007, 6(4): 265–281 18216026, 10.1093/bfgp/elm034, 1:CAS:528:DC%2BD1cXjtFKrurw%3D

    Article  PubMed  CAS  Google Scholar 

  34. Shiu S H, Borevitz J O. The next generation of microarray research: applications in evolutionary and ecological genomics. Heredity, 2008, 100(2): 141–149 17091126, 10.1038/sj.hdy.6800916, 1:CAS:528:DC%2BD1cXovFKluw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  35. Xiao H S, Huang Q H, Zhang F X, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA, 2002, 99(12): 8360–8365 12060780, 10.1073/pnas.122231899, 1:CAS:528:DC%2BD38XkvVGgu7Y%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. van’ t Veer L J, Dai H, van de Vijver M J, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871): 530–536 10.1038/415530a

    Article  Google Scholar 

  37. The International HapMap Project. Nature, 2003, 426(6968): 789–796

    Google Scholar 

  38. Gunderson K L, Steemers FJ, Lee G, et al. A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet, 2005, 37(5): 549–554 15838508, 10.1038/ng1547, 1:CAS:528:DC%2BD2MXjsF2ks74%3D

    Article  PubMed  CAS  Google Scholar 

  39. Rebsamen M C, Desmeules J, Daali Y, et al. The AmpliChip CYP450 test: cytochrome P450 2D6 genotype assessment and phenotype prediction. Pharmacogenomics J, 2008

  40. Burton P R, Clayton D G, Cardon L R, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet, 2007, 39(11): 1329–1337 17952073, 10.1038/ng.2007.17, 1:CAS:528:DC%2BD2sXht1aqtrvF

    Article  PubMed  CAS  Google Scholar 

  41. Carter N P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet, 2007, 39(7 Suppl): S16–21 17597776, 10.1038/ng2028, 1:CAS:528:DC%2BD2sXmvFKmsbk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Lee C, Iafrate A J, Brothman A R. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet, 2007, 39(7 Suppl): S48–54 17597782, 10.1038/ng2092, 1:CAS:528:DC%2BD2sXmvFKmtrw%3D

    Article  PubMed  CAS  Google Scholar 

  43. Manikandan J, Aarthi J J, Kumar S D, et al. Oncomirs: The potential role of non-coding microRNAs in understanding cancer. Bioinformation, 2008, 2(8): 330–334 18685719

    Article  PubMed Central  PubMed  Google Scholar 

  44. Grosshans H, Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature, 2008, 451(7177): 414–416 18216846, 10.1038/451414a, 1:CAS:528:DC%2BD1cXhtVGnsLo%3D

    Article  PubMed  CAS  Google Scholar 

  45. Yin J Q, Zhao R C, Morris K V. Profiling microRNA expression with microarrays. Trends Biotechnol, 2008, 26(2): 70–76 18191262, 10.1016/j.tibtech.2007.11.007, 1:CAS:528:DC%2BD1cXhsVCktb0%3D

    Article  PubMed  CAS  Google Scholar 

  46. Blenkiron C, Goldstein L D, Thorne N P, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol, 2007, 8(10): R214 17922911, 10.1186/gb-2007-8-10-r214

    Article  PubMed Central  PubMed  Google Scholar 

  47. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 2006, 9(3): 189–198 16530703, 10.1016/j.ccr.2006.01.025, 1:CAS:528:DC%2BD28XivFWjtLw%3D

    Article  PubMed  CAS  Google Scholar 

  48. Mattie M D, Benz C C, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer, 2006, 5: 24 16784538, 10.1186/1476-4598-5-24

    Article  PubMed Central  PubMed  Google Scholar 

  49. Meier A, Fiegler H, Munoz P, et al. Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO J, 2007, 26(11): 2707–2718 17491589, 10.1038/sj.emboj.7601719, 1:CAS:528:DC%2BD2sXmtFSju7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Guenther M G, Levine S S, Boyer L A, et al. A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007, 130(1): 77–88 17632057, 10.1016/j.cell.2007.05.042, 1:CAS:528:DC%2BD2sXotlGmtrk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Lupien M, Eeckhoute J, Meyer C A, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell, 2008, 132(6): 958–970 18358809, 10.1016/j.cell.2008.01.018, 1:CAS:528:DC%2BD1cXkt1Wqs7c%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Schuster S C. Next-generation sequencing transforms today’s biology. Nat Methods, 2008, 5(1): 16–18 18165802, 10.1038/nmeth1156, 1:CAS:528:DC%2BD1cXht1SltQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  53. Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008, 321(5891): 956–960 18599741, 10.1126/science.1160342, 1:CAS:528:DC%2BD1cXpslWrur4%3D

    Article  PubMed  CAS  Google Scholar 

  54. Harris T D, Buzby P R, Babcock H, et al. Single-molecule DNA sequencing of a viral genome. Science, 2008, 320(5872): 106–109 18388294, 10.1126/science.1150427, 1:CAS:528:DC%2BD1cXktVKhsbc%3D

    Article  PubMed  CAS  Google Scholar 

  55. Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24(3): 133–141 18262675, 1:CAS:528:DC%2BD1cXislKht74%3D

    Article  PubMed  CAS  Google Scholar 

  56. van Orsouw N J, Hogers R C, Janssen A, et al. Complexity reduction of polymorphic sequences (CRoPS): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE, 2007, 2(11): e1172 18000544, 10.1371/journal.pone.0001172

    Article  PubMed Central  PubMed  Google Scholar 

  57. Hillier L W, Marth G T, Quinlan A R, et al. Whole-genome sequencing and variant discovery in C. elegans. Nat Methods, 2008, 5(2): 183–188 18204455, 10.1038/nmeth.1179, 1:CAS:528:DC%2BD1cXhsV2ksLs%3D

    Article  PubMed  CAS  Google Scholar 

  58. Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5(7): 621–628 18516045, 10.1038/nmeth.1226, 1:CAS:528:DC%2BD1cXnslyqs7k%3D

    Article  PubMed  CAS  Google Scholar 

  59. Sugarbaker D J, Richards W G, Gordon G J, et al. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci USA, 2008, 105(9): 3521–3526 18303113, 10.1073/pnas.0712399105, 1:CAS:528:DC%2BD1cXjtlams78%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Zhao T, Li G, Mi S, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007, 21(10): 1190–1203 17470535, 10.1101/gad.1543507, 1:CAS:528:DC%2BD2sXls1aqu7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Houwing S, Kamminga L M, Berezikov E, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell, 2007, 129(1): 69–82 17418787, 10.1016/j.cell.2007.03.026, 1:CAS:528:DC%2BD2sXkvVeltL0%3D

    Article  PubMed  CAS  Google Scholar 

  62. Stark A, Kheradpour P, Parts L, et al. Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res, 2007, 17(12): 1865–1879 17989255, 10.1101/gr.6593807, 1:CAS:528:DC%2BD2sXhsVGhsLnK

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Ruby J G, Jan C, Player C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell, 2006, 127(6): 1193–1207 17174894, 10.1016/j.cell.2006.10.040, 1:CAS:528:DC%2BD2sXhs1eguw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  64. Morin R D, O’Connor M D, Griffith M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res, 2008, 18(4): 610–621 18285502, 10.1101/gr.7179508, 1:CAS:528:DC%2BD1cXks1alsLk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Berezikov E, Thuemmler F, van Laake L W, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet, 2006, 38(12): 1375–1377 17072315, 10.1038/ng1914, 1:CAS:528:DC%2BD28Xht1CntrbE

    Article  PubMed  CAS  Google Scholar 

  66. Johnson D S, Mortazavi A, Myers R M, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science, 2007, 316(5830): 1497–1502 17540862, 10.1126/science.1141319, 1:CAS:528:DC%2BD2sXmtFSjtrg%3D

    Article  PubMed  CAS  Google Scholar 

  67. Robertson G, Hirst M, Bainbridge M, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 2007, 4(8): 651–657 17558387, 10.1038/nmeth1068, 1:CAS:528:DC%2BD2sXot12mt74%3D

    Article  PubMed  CAS  Google Scholar 

  68. Chen X, Xu H, Yuan P, et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 2008, 133(6): 1106–1117 18555785, 10.1016/j.cell.2008.04.043, 1:CAS:528:DC%2BD1cXnsF2gurw%3D

    Article  PubMed  CAS  Google Scholar 

  69. Euskirchen G M, Rozowsky J S, Wei C L, et al. Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res, 2007, 17(6): 898–909 17568005, 10.1101/gr.5583007, 1:CAS:528:DC%2BD2sXntVSjsb4%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Oudes A J, Roach J C, Walashek L S, et al. Application of Affymetrix array and Massively Parallel Signature Sequencing for identification of genes involved in prostate cancer progression. BMC Cancer, 2005, 5: 86 16042785, 10.1186/1471-2407-5-86

    Article  PubMed Central  PubMed  Google Scholar 

  71. Zhang G H, Shi D R, Liang X M, et al. Comparision of HER2/neu oncogene detected by chromogenic in-situ hybridization and immunohistochemistry in breast cancer. Zhonghua Bing Li Xue Za Zhi, 2006, 35(10): 580–583 17134562

    PubMed  Google Scholar 

  72. Dahl F, Stenberg J, Fredriksson S, et al. Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc Natl Acad Sci USA, 2007, 104(22): 9387–9392 17517648, 10.1073/pnas.0702165104, 1:CAS:528:DC%2BD2sXmtlegsr0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Albert T J, Molla M N, Muzny D M, et al. Direct selection of human genomic loci by microarray hybridization. Nat Methods, 2007, 4(11): 903–905 17934467, 10.1038/nmeth1111, 1:CAS:528:DC%2BD2sXht1aqtbfL

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuaSheng Xiao.

Additional information

Supported by the National High-Tech Research Program of China (Grant No.2006AA020704) and Shanghai Science and Technology Commission (Grant No. 05DZ22201)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teng, X., Xiao, H. Perspectives of DNA microarray and next-generation DNA sequencing technologies. SCI CHINA SER C 52, 7–16 (2009). https://doi.org/10.1007/s11427-009-0012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0012-9

Keywords

Navigation