Skip to main content

The Prospective Isolation of Viable, High Ploidy Megakaryocytes from Adult Murine Bone Marrow by Fluorescence Activated Cell Sorting

  • Protocol
  • First Online:
Stem Cell Niche

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1035))

Abstract

Mature megakaryocytes (MM) can be up to 65 μM in diameter and due to their size, viable and pure MM populations have been difficult to isolate in large numbers. Here in, we report a fluorescence activated cell sorting (FACS) method by which viable and pure populations of 8 N, 16 N, 32 N, and 64 N MM can be isolated from murine bone marrow (BM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen Y, Nilsson SK (2012) Curr Opin Hematol 19(4):250–5

    Google Scholar 

  2. Heazlewood SY, Neaves RJ, Williams B, Haylock DN, Adams TE, Nilsson SK (in press) Stem Cell Research

    Google Scholar 

  3. Levine RF, Hazzard KC, Lamberg JD (1982) The significance of megakaryocyte size. Blood 60:1122–1131

    CAS  PubMed  Google Scholar 

  4. Nakeff A, Maat B (1974) Separation of megakaryocytes from mouse bone marrow by velocity sedimentation. Blood 43:591–595

    CAS  PubMed  Google Scholar 

  5. Levine RF, Fedorko ME (1976) Isolation of intact megakaryocytes from guinea pig femoral marrow. Successful harvest made possible with inhibitions of platelet aggregation; enrichment achieved with a two-step separation technique. J Cell Biol 69:159–172

    Article  CAS  PubMed  Google Scholar 

  6. Radley JM, Haller CJ (1982) The demarcation membrane system of the megakaryocyte: a misnomer? Blood 60:213–219

    CAS  PubMed  Google Scholar 

  7. Nakeff A, Valeriote F, Gray JW, Grabske RJ (1979) Application of flow cytometry and cell sorting to megakaryocytopoiesis. Blood 53:732–745

    CAS  PubMed  Google Scholar 

  8. Jackson CW, Brown LK, Somerville BC, Lyles SA, Look AT (1984) Two-color flow cytometric measurement of DNA distributions of rat megakaryocytes in unfixed, unfractionated marrow cell suspensions. Blood 63:768–778

    CAS  PubMed  Google Scholar 

  9. Ishibashi T, Burstein SA (1985) Separation of murine megakaryocytes and their progenitors on continuous gradients of Percoll. J Cell Physiol 125:559–566

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka H, Ishida Y, Kaneko T, Matsumoto N (1989) Isolation of human megakaryocytes by immunomagnetic beads. Br J Haematol 73:18–22

    Article  CAS  PubMed  Google Scholar 

  11. Kuter DJ, Gminski D, Rosenberg RD (1992) Botrocetin agglutination of rat megakaryocytes: a rapid method for megakaryocyte isolation. Exp Hematol 20:1085–1089

    CAS  PubMed  Google Scholar 

  12. Hussein K (2011) Gene expression profiling in laser-microdissected bone marrow megakaryocytes. Methods Mol Biol 755:429–439

    Article  CAS  PubMed  Google Scholar 

  13. Mazharian A (2012) Assessment of megakaryocyte migration and chemotaxis. Methods Mol Biol 788:275–288

    Article  CAS  PubMed  Google Scholar 

  14. Tolhurst G, Carter RN, Miller N, Mahaut-Smith MP (2012) Purification of native bone marrow megakaryocytes for studies of gene expression. Methods Mol Biol 788:259–273

    Article  CAS  PubMed  Google Scholar 

  15. Davies D (2007) Cell sorting by flow cytometry. In: Macey MG (ed) Flow cytometry: principles and applications, Humana Press, New Jersey, USA, pp 257–276.

    Google Scholar 

  16. Williams B, Nilsson SK (2009) Investigating the interactions between haemopoietic stem cells and their niche: methods for the analysis of stem cell homing and distribution within the marrow following transplantation. Methods Mol Biol 482:93–107

    Article  CAS  PubMed  Google Scholar 

  17. Ebbe S, Boudreaux M (1998) Relationship of megakaryocyte ploidy with platelet number and size in cats, dogs, rabbits and mice. Comp Haematol Int 8:21–25

    Article  Google Scholar 

  18. Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ (1997) Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 89:4013–4020

    CAS  PubMed  Google Scholar 

  19. Haylock DN, Williams B, Johnston HM, Liu MC, Rutherford KE, Whitty GA et al (2007) Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25:1062–1069

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dani Cardozo for assistance with animal work, Michael Reitsma and Andrew Fryga for intellectual input and flow cytometric support. In addition, we also thank Kathryn Flanagan and Karen Clarke for flow cytometric support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Heazlewood, S.Y., Williams, B., Storan, M.J., Nilsson, S.K. (2013). The Prospective Isolation of Viable, High Ploidy Megakaryocytes from Adult Murine Bone Marrow by Fluorescence Activated Cell Sorting. In: Turksen, K. (eds) Stem Cell Niche. Methods in Molecular Biology, vol 1035. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-508-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-508-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-507-1

  • Online ISBN: 978-1-62703-508-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics