Skip to main content

Chromatin Immunoprecipitation Assays for Myc and N-Myc

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1012))

Abstract

Myc and N-Myc have widespread impacts on the chromatin state within cells, both in a gene-specific and genome-wide manner. Our laboratory uses functional genomic methods including chromatin immunoprecipitation (ChIP), ChIP-chip, and, more recently, ChIP-seq to analyze the binding and genomic location of Myc. In this chapter, we describe an effective ChIP protocol using specific validated antibodies to Myc and N-Myc. We discuss the application of this protocol to several types of stem and cancer cells, with a focus on aspects of sample preparation prior to library preparation that are critical for successful Myc ChIP assays. Key variables are discussed and include the starting quantity of cells or tissue, lysis and sonication conditions, the quantity and quality of antibody used, and the identification of reliable target genes for ChIP validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V et al (2006) Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8:764–770

    Article  PubMed  CAS  Google Scholar 

  2. Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H et al (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3:392–399

    Article  PubMed  CAS  Google Scholar 

  3. Varlakhanova N, Cotterman R, Bradnam K, Korf I, Knoepfler PS (2011) Myc and Miz-1 have coordinate genomic functions including targeting Hox genes in human embryonic stem cells. Epigenetics Chromatin 4:20

    Article  PubMed  CAS  Google Scholar 

  4. Bieda M, Xu X, Singer MA, Green R, Farnham PJ (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16:595–605

    Article  PubMed  CAS  Google Scholar 

  5. Knoepfler PS, Zhang X, Cheng PF, Gafken PR, McMahon SB, Eisenman RN (2006) Myc influences global chromatin structure. EMBO J 25:2723

    Article  PubMed  CAS  Google Scholar 

  6. Zippo A, De Robertis A, Serafini R, Oliviero S (2007) PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9:932–944

    Article  PubMed  CAS  Google Scholar 

  7. McMahon SB, Wood MA, Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 20:556–562

    Article  PubMed  CAS  Google Scholar 

  8. Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan H-M et al (2003) MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep 4:575–580

    Article  PubMed  CAS  Google Scholar 

  9. Cotterman R, Jin VX, Krig SR, Lemen JM, Wey A, Farnham PJ et al (2008) N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classical transcription factor. Cancer Res 68:9654–9662

    Article  PubMed  CAS  Google Scholar 

  10. O'Geen H, Echipare L, Farnham PJ (2011) Using ChIP-Seq technology to generate high-resolution profiles of histone modifications. Methods Mol Biol 791:265–286

    Article  PubMed  Google Scholar 

  11. O'Geen H, Nicolet CM, Blahnik K, Green R, Farnham PJ (2006) Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41:577–580

    Article  PubMed  Google Scholar 

  12. Ralser M, Querfurth R, Warnatz HJ, Lehrach H, Yaspo ML, Krobitsch S (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347:747–751

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by CIRM grant RN2-00922 and NIH grant R01GM100782-01. We thank the Farnham laboratory for help with functional genomics protocols and in particular Henriette O’Geen for assistance with ChIP-seq.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barrilleaux, B.L., Cotterman, R., Knoepfler, P.S. (2013). Chromatin Immunoprecipitation Assays for Myc and N-Myc. In: Soucek, L., Sodir, N. (eds) The Myc Gene. Methods in Molecular Biology, vol 1012. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-429-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-429-6_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-428-9

  • Online ISBN: 978-1-62703-429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics