Skip to main content

Methods for the Expression, Purification, Preparation, and Biophysical Characterization of Constructs of the c-Myc and Max b-HLH-LZs

  • Protocol
  • First Online:
The Myc Gene

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1012))

Abstract

Specific heterodimerization and DNA binding by the b-HLH-LZ transcription factors c-Myc and Max is central to the activation and repression activities of c-Myc that lead to cell growth, proliferation, and tumorigenesis (Adhikary and Eilers, Nat Rev Mol Cell Biol 6:635–645, 2005; Eilers and Eisenman, Genes Dev 22:2755–2766, 2008; Grandori et al., Annu Rev Cell Dev Biol 16:653–699, 2000; Whitfield and Soucek, Cell Mol Life Sci 69:931–934, 2011). Although many c-Myc-interacting partner proteins are known to interact through their HLH domain (Adhikary and Eilers, Nat Rev Mol Cell Biol 6:635–645, 2005), current knowledge regarding the structure and the determinants of molecular recognition of these complexes is still very limited. Moreover, recent advances in the development and use of b-HLH-LZ dominant negatives (Soucek et al., Nature 455:679–683, 2008) and inhibitors of c-Myc interaction with its protein partners (Bidwell et al., J Control Release 135:2–10, 2009; Mustata et al., J Med Chem 52:1247–1250, 2009; Prochownik and Vogt, Genes Cancer 1:650–659, 2010) or DNA highlight the importance of efficient protocols to prepare such constructs and variants. Here, we provide methods to produce and purify high quantities of pure and untagged b-HLH-LZ constructs of c-Myc and Max as well as specific c-Myc/Max heterodimers for their biophysical and structural characterization by CD, NMR, or crystallography. Moreover, biochemical methods to analyze the homodimers and heterodimers as well as DNA binding of these constructs by native electrophoresis are presented. In addition to enable the investigation of the c-Myc/Max b-HLH-LZ complexes, the protocols described herein can be applied to the biochemical characterization of various mutants of either partner, as well as to ternary complexes with other partner proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645

    Article  PubMed  CAS  Google Scholar 

  2. Eilers M, Eisenman RN (2008) Myc's broad reach. Genes Dev 22:2755–2766

    Article  PubMed  CAS  Google Scholar 

  3. Grandori C et al (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  PubMed  CAS  Google Scholar 

  4. Whitfield JR, Soucek L (2012) Tumor microenvironment: becoming sick of Myc. Cell Mol Life Sci 69:931–934

    Article  PubMed  CAS  Google Scholar 

  5. Soucek L et al (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    Article  PubMed  CAS  Google Scholar 

  6. Bidwell GL et al (2009) Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides. J Control Release 135:2–10

    Article  PubMed  CAS  Google Scholar 

  7. Mustata G et al (2009) Discovery of novel Myc-Max heterodimer disruptors with a three-dimensional pharmacophore model. J Med Chem 52:1247–1250

    Article  PubMed  CAS  Google Scholar 

  8. Prochownik EV, Vogt PK (2010) Therapeutic targeting of Myc. Genes Cancer 1:650–659

    Article  PubMed  CAS  Google Scholar 

  9. Beaulieu M-E, Mc Duff F-O, Frappier V, Montagne M, Naud J-F, Lavigne P (2012) J Mol Recognit 25:414–426. doi: 10.1002/jmr.2203

    Google Scholar 

  10. Lebel R et al (2007) Direct visualization of the binding of c-Myc/Max heterodimeric b-HLH-LZ to E-box sequences on the hTERT promoter. Biochemistry 46:10279–10286

    Article  PubMed  CAS  Google Scholar 

  11. Mcduff F-O et al (2009) The Max homodimeric b-HLH-LZ significantly interferes with the specific heterodimerization between the c-Myc and Max b-HLH-LZ in absence of DNA: a quantitative analysis. J Mol Recognit 22:261–269

    Article  PubMed  CAS  Google Scholar 

  12. Montagne M et al (2012) The Max b-HLH-LZ can transduce into cells and inhibit c-Myc transcriptional activities. PLoS One 7:e32172

    Article  PubMed  CAS  Google Scholar 

  13. Naud J-F et al (2003) Improving the thermodynamic stability of the leucine zipper of max increases the stability of its b-HLH-LZ:E-box complex. J Mol Biol 326:1577–1595

    Article  Google Scholar 

  14. Sauvé S et al (2007) The mechanism of discrimination between cognate and non-specific DNA by dimeric b/HLH/LZ transcription factors. J Mol Biol 365:1163–1175

    Article  PubMed  Google Scholar 

  15. Sauvé S et al (2004) The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. J Mol Biol 342:813–832

    Article  PubMed  Google Scholar 

  16. Tam JPWCRLWZJW (1991) Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J Am Chem Soc 113:6657–6662

    Article  CAS  Google Scholar 

  17. Chrambach A, Jovin T (1983) Selected buffer systems for moving boundary electrophoresis on gels at various pH values, presented in a simplified manner. Electrophoresis 4:190–204

    Article  CAS  Google Scholar 

  18. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060

    Article  PubMed  CAS  Google Scholar 

  19. Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525

    Article  PubMed  CAS  Google Scholar 

  20. Sambrook J, F. EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  21. Larouche K et al (1996) Optimization of competitor poly(dI-dC).poly(dI-dC) levels is advised in DNA-protein interaction studies involving enriched nuclear proteins. Biotechniques 20:439–444

    PubMed  CAS  Google Scholar 

  22. Fried MG (1989) Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10:366–376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Beaulieu, ME., McDuff, FO., Bédard, M., Montagne, M., Lavigne, P. (2013). Methods for the Expression, Purification, Preparation, and Biophysical Characterization of Constructs of the c-Myc and Max b-HLH-LZs. In: Soucek, L., Sodir, N. (eds) The Myc Gene. Methods in Molecular Biology, vol 1012. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-429-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-429-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-428-9

  • Online ISBN: 978-1-62703-429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics