Skip to main content

Evaluation of Complement-Dependent Cytotoxicity Using ATP Measurement and C1q/C4b Binding

  • Protocol
  • First Online:
Glycosylation Engineering of Biopharmaceuticals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 988))

Abstract

One of the major issues for antibody treatment is enhancement of efficacy. Recent studies have highlighted the important role of effector functions in improvement of antibody therapy. Among effector functions, complement-dependent cytotoxicity (CDC), which induces cell lysis by a cascade of activation triggered by the binding of C1q subunits to the Fc regions of antibodies bound to the cell surface, is part of the mechanism of several antibody therapies. CDC can be modulated by either Fc isotype engineering or Fc genetic mutations or Fc glycosylation profile modifications. To evaluate the impact of such modifications on CDC, we describe a luminescence method based on ATP measurement to estimate tumor damaged cells and a flow cytometry method to evaluate the binding of C1q on the Fc region and the binding of C4b on cell surface. The luminescence method coupled with complement protein analysis by flow cytometry encompasses all needed methods to evaluate antibody ability to trigger CDC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strome SE, Sausville EA, Mann D (2007) A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 12:1084–1095

    Article  PubMed  CAS  Google Scholar 

  2. McEarchern JA, Oflazoglu E, Francisco L, McDonagh CF, Gordon KA, Stone I et al (2007) Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. Blood 109:1185–1192

    Article  PubMed  CAS  Google Scholar 

  3. Natsume A, In M, Takamura H, Nakagawa T, Shimizu Y, Kitajima K et al (2008) Engineered antibodies of IgG1/IgG3 mixed isotype with enhanced cytotoxic activities. Cancer Res 68:3863–3872

    Article  PubMed  CAS  Google Scholar 

  4. Moore GL, Chen H, Karki S, Lazar GA (2010) Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs 2:181–189

    Article  PubMed  Google Scholar 

  5. Daha NA, Banda NK, Roos A, Beurskens FJ, Bakker JM, Daha MR et al (2011) Complement activation by (auto-) antibodies. Mol Immunol 48:1656–1665

    Article  PubMed  CAS  Google Scholar 

  6. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW et al (2003) Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 101:1045–1052

    Article  PubMed  CAS  Google Scholar 

  7. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E et al (2003) Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 171:1581–1587

    PubMed  Google Scholar 

  8. Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S et al (2000) Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95:3900–3908

    PubMed  CAS  Google Scholar 

  9. Idusogie EE, Wong PY, Presta LG, Gazzano-Santoro H, Totpal K, Ultsch M et al (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166:2571–2575

    PubMed  CAS  Google Scholar 

  10. Manches O, Lui G, Chaperot L, Gressin R, Molens JP, Jacob MC et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101:949–954

    Article  PubMed  CAS  Google Scholar 

  11. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445

    PubMed  CAS  Google Scholar 

  12. Zent CS, Secreto CR, LaPlant BR, Bone ND, Call TG, Shanafelt TD et al (2008) Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-­intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res 32:1849–1856

    Article  PubMed  CAS  Google Scholar 

  13. Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N (2009) Engineered therapeutic antibodies with improved effector functions. Cancer Sci 100:1566–1572

    Article  PubMed  CAS  Google Scholar 

  14. Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21:1644–1652

    Article  PubMed  CAS  Google Scholar 

  15. Boyd PN, Lines AC, Patel AK (1995) The effect of the removal of sialic acid, galactose and total carbohydrate on the functional ­activity of Campath-1H. Mol Immunol 32:1311–1318

    Article  PubMed  CAS  Google Scholar 

  16. Pawluczkowycz AW, Beurskens FJ, Beum PV, Lindorfer MA, van de Winkel JG, Parren PW et al (2009) Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol 183:749–758

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Broyer, L., Goetsch, L., Broussas, M. (2013). Evaluation of Complement-Dependent Cytotoxicity Using ATP Measurement and C1q/C4b Binding. In: Beck, A. (eds) Glycosylation Engineering of Biopharmaceuticals. Methods in Molecular Biology, vol 988. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-327-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-327-5_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-326-8

  • Online ISBN: 978-1-62703-327-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics