Skip to main content

Evaluating Effects of EPO in Rodent Behavioral Assays Related to Depression

  • Protocol
  • First Online:
Tissue-Protective Cytokines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 982))

Abstract

The cytokine erythropoietin (EPO) is an important regulator of hematopoesis and has well-known tissue protective properties. Neurotrophic action is implicated as mechanistically important in the treatment of depression, and neurotrophic actions of EPO suggest potential therapeutic utility of an EPO-like mechanism in depressive disorder. Rodent behavioral models that are responsive to clinically used antidepressants as well as to neurotrophic compounds can be used to assess potential antidepressant properties of EPO and EPO-like compounds. Rodent models described here are the forced-swim test (FST), a hyponeophagia test and the novel object recognition test. Each of these models provides different information and relevance to depression and each can be tested with EPO and similar compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masuda S et al (1993) Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 268(15):11208–11216

    PubMed  CAS  Google Scholar 

  2. Konishi Y et al (1993) Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res 609(1–2):29–35

    Article  PubMed  CAS  Google Scholar 

  3. Morishita E et al (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76(1):105–116

    Article  PubMed  CAS  Google Scholar 

  4. Brines M et al (2000) Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97(19):10526–10531

    Article  PubMed  CAS  Google Scholar 

  5. Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6(6):484–494

    Article  PubMed  CAS  Google Scholar 

  6. Leist M et al (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305(5681):239–242

    Article  PubMed  CAS  Google Scholar 

  7. Brines M et al (2008) Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A 105:10925–10930

    Article  PubMed  CAS  Google Scholar 

  8. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54(7):597–606

    Article  PubMed  CAS  Google Scholar 

  9. Girgenti MJ et al (2009) Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biol Psychiatry 66(3):267–274

    Article  PubMed  CAS  Google Scholar 

  10. Miskowiak K et al (2008) Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology 33(3):611–618

    Article  PubMed  CAS  Google Scholar 

  11. Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229(2):327–336

    PubMed  CAS  Google Scholar 

  12. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  PubMed  CAS  Google Scholar 

  13. Porsolt RD, Bertin A, Jalfre M (1978) “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 51(3):291–294

    Article  PubMed  CAS  Google Scholar 

  14. Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 94:147–160

    Article  CAS  Google Scholar 

  15. Shirayama Y et al (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22(8):3251–3261

    PubMed  CAS  Google Scholar 

  16. Duman CH et al (2009) Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res 198(2):366–371

    Article  PubMed  CAS  Google Scholar 

  17. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121(1):66–72

    Article  CAS  Google Scholar 

  18. Lucki I (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523–532

    Article  PubMed  CAS  Google Scholar 

  19. Willner P (1990) Animal models of depression: an overview. Pharmacol Ther 45:425–455

    Article  PubMed  CAS  Google Scholar 

  20. Thiébot M-H, Martin P, Puech AJ (1992) Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiatry 160:44–50

    Google Scholar 

  21. Bodnoff SR et al (1988) The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl) 95(3):298–302

    Article  CAS  Google Scholar 

  22. Bodnoff SR et al (1989) A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacology (Berl) 97(2):277–279

    Article  CAS  Google Scholar 

  23. Dulawa SC, Hen R (2005) Effects of chronic fluoxetine in animal models of anxiety and depression. Neurosci Biobehav Rev 29(4–5):771–783

    Article  PubMed  CAS  Google Scholar 

  24. Kaufman J, Charney D (2000) Comorbidity of mood and anxiety disorders. Depress Anxiety 12(Suppl 1):69–76

    Article  PubMed  Google Scholar 

  25. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl 1):2–19

    Article  PubMed  Google Scholar 

  26. Serretti A et al (2009) Common genetic, clinical, demographic and psychosocial predictors of response to pharmacotherapy in mood and anxiety disorders. Int Clin Psychopharmacol 24(1):1–18

    Article  PubMed  Google Scholar 

  27. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31(1):47–59

    Article  PubMed  CAS  Google Scholar 

  28. Miskowiak K et al (2008) Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration. Exp Brain Res 184(3):313–321

    Article  PubMed  CAS  Google Scholar 

  29. Ehrenreich H et al (2004) Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol Psychiatry 9(1):42–54

    PubMed  CAS  Google Scholar 

  30. Morgensen J et al (2008) Erythropoietin improves spatial delayed alternation in a T-maze in rats subjected to ablation of the prefrontal cortex. Brain Res Bull 77(1):1–7

    Article  Google Scholar 

  31. Mun KC, Golper TA (2000) Impaired biological activity of erythropoietin by cyanate carbamylation. Blood Purif 18:13–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shannon Gourley and Monica Sathyanesan for their assistance in conducting the novel object recognition test. This work is supported by USHPS grant MH 078132 and the Connecticut Mental Health Center.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Duman, C.H., Newton, S.S. (2013). Evaluating Effects of EPO in Rodent Behavioral Assays Related to Depression. In: Ghezzi, P., Cerami, A. (eds) Tissue-Protective Cytokines. Methods in Molecular Biology, vol 982. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-308-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-308-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-307-7

  • Online ISBN: 978-1-62703-308-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics