Skip to main content
Log in

Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Erythropoietin (Epo) has neuroprotective and neurotrophic effects and improves cognitive function in animal models of neurodegenerative and neuropsychiatric illness. In humans, weekly Epo administration over 3 months improves cognitive function in schizophrenia. The neural underpinnings and time-course of this effect of Epo are currently unknown. It is also unclear whether the cognitive improvement reflects direct neurobiological actions or is secondary to hematological effects. We therefore assessed the actions of single administration of Epo (40,000 IU) vs. saline to healthy volunteers on cognitive and neural measures of executive function using a verbal fluency task and N-back working memory (WM) paradigm during functional magnetic resonance imaging (fMRI) on day 3 and 7 after administration in two separate cohorts of subjects. Epo modulated neuronal response in a fronto-parietal network during WM performance at both time points; on day 3 after administration, activation was increased in left-hemisphere frontal and cingulate cortex and reduced in the right parietal cortex; in contrast, neural response was enhanced in a right-lateralized fronto-parietal network and reduced in left-side regions 1 week post-administration. In addition, Epo-treated volunteers displayed improved verbal fluency performance 1 week post-administration. These effects occurred in the absence of changes in hematological measures suggesting that they reflect direct neurobiological actions of Epo. The findings are co

nsistent with enduring effects of Epo on neurotrophic signaling and induction of neurochemical changes over time in neural networks typically affected in neuropsychiatric illness. The present study supports the notion that Epo may have clinical applications in the treatment of psychiatric disorder characterized by cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    Article  PubMed  CAS  Google Scholar 

  • Bimonte HA, Nelson ME, Granholm AC (2003) Age-related deficits as working memory load increases: relationships with growth factors. Neurobiol Aging 24(1):37–48

    Article  PubMed  CAS  Google Scholar 

  • Birn RM, Cox RW, Bandettini PA (2002) Detection versus estimation in event-related fMRI: choosing the optimal stimulus timing. Neuroimage 15:252–264

    Article  PubMed  Google Scholar 

  • Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C et al (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97:10526–10531

    Article  PubMed  CAS  Google Scholar 

  • Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Neurosci 6:484–494

    Article  CAS  Google Scholar 

  • Bonne O, Krausz Y, Aharon Y, Gelfin Y, Chisin R, Lerer B (1999). Clinical doses of fluoxetine and cerebral blood flow in healthy volunteers. Psychopharmacology 143:24–28

    Article  PubMed  CAS  Google Scholar 

  • Dupin N, Mailliet F, Rocher C, Kessal K, Spedding M, Jay TM (2006) Common efficacy of psychotropic drugs in restoring stress-induced impairment of prefrontal plasticity. Neurotox Res 10:193–198

    Article  PubMed  CAS  Google Scholar 

  • Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M et al (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    PubMed  CAS  Google Scholar 

  • Ehrenreich H, Degner D, Meller J, Brines M, Behe M, Hasselblatt M, Woldt H, Falkai P, Knerlich F, Jacob S, von Ahsen N, Maier W, Bruck W, Ruther E, Cerami A, Becker W, Siren AL (2004) Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol Psychiatry 9:42–54

    PubMed  CAS  Google Scholar 

  • Ehrenreich H, Hinze-Selch D, Stawicki S, Aust C, Knolle-Veentjer S, Wilms S et al (2007) Improvement of cognitive function in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry 12(2):206–220

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PC, Henson RN (2001) Frontal lobes and human memory: insights from functional neuroimaging. Brain 124:849–881

    Article  PubMed  CAS  Google Scholar 

  • Grier JB (1971) Nonparametric indices for sensitivity and bias: computing formulas. Psychol Bull 75:9424–9429

    Article  Google Scholar 

  • Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23:6690–6694

    PubMed  CAS  Google Scholar 

  • Harvey PO, Fossati P, Pochon JB, Levy R, Lebastard G, Lehericy S, Allilaire JF, Dubois B (2005) Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage 26:860–869

    Article  PubMed  Google Scholar 

  • Henry J, Crawford JR (2005) A meta-analytic review of verbal fluency deficits in depression. J Clin Exp Neuropsychol 27:78–101

    Article  PubMed  Google Scholar 

  • Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841

    Article  PubMed  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L et al (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  PubMed  CAS  Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239

    Article  PubMed  Google Scholar 

  • Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60:285–298

    Article  PubMed  Google Scholar 

  • Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Miskowiak K, O’Sullivan U, Harmer C (2007a) Erythropoietin enhances hippocampal response during memory retrieval in humans. J Neurosci 27:2788–2792

    Article  PubMed  CAS  Google Scholar 

  • Miskowiak K, Inkster B, Selvaraj S, Goodwin G, Harmer C (2007b) Erythropoietin has no effect on hippocampal response during memory retrieval 3 days post-administration. Psychopharmacology (in press)

  • Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JD (2000) Integration of diverse information in working memory within the frontal lobe. Nat Neurosci 3:85–90

    Article  PubMed  CAS  Google Scholar 

  • Ransome MI, Turnley AM (2007) Systemically delivered Erythropoietin transiently enhances adult hippocampal neurogenesis. J Neurochem (in press)

  • Rybakowski JK, Borkowska A, Skibinska M, Szczepankiewicz A, Kapelski P, Leszczynska-Rodziewicz A, Czerski PM, Hauser J (2006) Prefrontal cognition in schizophrenia and bipolar illness in relation to Val66Met polymorphism of the brain-derived neurotrophic factor gene. Psychiatry Clin Neurosci 60:70–76

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • van Asselen M, Kessels RP, Neggers SF, Kappelle LJ, Frijns CJ, Postma A (2006) Brain areas involved in spatial working memory. Neuropsychologia 44(7):1185–1194

    Article  PubMed  Google Scholar 

  • van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77:477–482

    Article  PubMed  Google Scholar 

  • Viviani B, Bartesaghi S, Corsini E, Villa P, Ghezzi P, Garau A et al (2005). Erythropoietin protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor. J Neurochem 93:412–421

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737

    Article  PubMed  CAS  Google Scholar 

  • Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3:255–274

    Article  PubMed  Google Scholar 

  • Walter H, Bretschneider V, Gron G, Zurowski B, Wunderlich AP, Tomczak R, Spitzer M (2003) Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Cortex 39:897–911

    PubMed  Google Scholar 

  • Walter H, Wolf RC, Spitzer M, Vasic N (2006) Increased left prefrontal activation in patients with unipolar depression: an event-related, parametric, performance-controlled fMRI study. J Affect Disord (in press)

Download references

Acknowledgments

This study was supported by the Lundbeckfonden, Denmark, the ESRC, UK, and the Goodger Scholarship, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamilla Miskowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miskowiak, K., Inkster, B., O’Sullivan, U. et al. Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration. Exp Brain Res 184, 313–321 (2008). https://doi.org/10.1007/s00221-007-1102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-1102-1

Keywords

Navigation