Skip to main content

Natural Killer Cell Reprogramming with Chimeric Immune Receptors

  • Protocol
  • First Online:
Synthetic Messenger RNA and Cell Metabolism Modulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 969))

Abstract

Natural killer (NK) cells are emerging as a new tool for cell therapy of cancer. However, some cancer subtypes are relatively resistant to NK cell cytotoxicity. Expression of anti-CD19 chimeric signaling receptors can enhance NK-cell reactivity against CD19+ leukemia and lymphoma cells. Here we describe a method to enforce expression of such receptors in human NK cells relying on electroporation of mRNA and compare it to retroviral transduction of cDNA. These methods are applicable to the reprogramming of NK cells with chimeric receptors specific for other antigens expressed on cancer cells as well as with molecules that can modulate NK cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vivier E, Raulet DH, Moretta A et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    Article  PubMed  CAS  Google Scholar 

  2. Karre K, Ljunggren HG, Piontek G, Kiessling R (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    Article  PubMed  CAS  Google Scholar 

  3. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356:1795–1799

    Article  PubMed  CAS  Google Scholar 

  4. Delahaye NF, Rusakiewicz S, Martins I et al (2011) Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 17:700–707

    Article  PubMed  CAS  Google Scholar 

  5. Chiorean EG, Miller JS (2001) The biology of natural killer cells and implications for therapy of human disease. J Hematother Stem Cell Res 10:451–463

    Article  PubMed  CAS  Google Scholar 

  6. Ruggeri L, Capanni M, Casucci M et al (1999) Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94:333–339

    PubMed  CAS  Google Scholar 

  7. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    Article  PubMed  CAS  Google Scholar 

  8. Giebel S, Locatelli F, Lamparelli T et al (2003) Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 102:814–819

    Article  PubMed  CAS  Google Scholar 

  9. Leung W, Iyengar R, Turner V et al (2004) Determinants of antileukemia effects of allogeneic NK cells. J Immunol 172:644–650

    PubMed  CAS  Google Scholar 

  10. Leung W, Iyengar R, Triplett B et al (2005) Comparison of killer Ig-like receptor genotyping and phenotyping for selection of allogeneic blood stem cell donors. J Immunol 174:6540–6545

    PubMed  CAS  Google Scholar 

  11. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    Article  PubMed  CAS  Google Scholar 

  12. Moretta L, Locatelli F, Pende D, Marcenaro E, Mingari MC, Moretta A (2011) Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood 117:764–771

    Article  PubMed  CAS  Google Scholar 

  13. Miller JS, Soignier Y, Panoskaltsis-Mortari A et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in cancer patients. Blood 105:3051–3057

    Article  PubMed  CAS  Google Scholar 

  14. Rubnitz JE, Inaba H, Ribeiro RC et al (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28:955–959

    Article  PubMed  CAS  Google Scholar 

  15. Trinchieri G, Matsumoto-Kobayashi M, Clark SC, Seehra J, London L, Perussia B (1984) Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med 160:1147–1169

    Article  PubMed  CAS  Google Scholar 

  16. London L, Perussia B, Trinchieri G (1986) Induction of proliferation in vitro of resting human natural killer cells: IL 2 induces into cell cycle most peripheral blood NK cells, but only a minor subset of low density T cells. J Immunol 137:3845–3854

    PubMed  CAS  Google Scholar 

  17. Lanier LL, Buck DW, Rhodes L et al (1988) Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med 167:1572–1585

    Article  PubMed  CAS  Google Scholar 

  18. Carlens S, Gilljam M, Chambers BJ et al (2001) A new method for in vitro expansion of cytotoxic human CD3-CD56+ natural killer cells. Hum Immunol 62:1092–1098

    Article  PubMed  CAS  Google Scholar 

  19. Alici E, Sutlu T, Bjorkstrand B et al (2008) Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components. Blood 111:3155–3162

    Article  PubMed  CAS  Google Scholar 

  20. Fujisaki H, Kakuda H, Shimasaki N et al (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69:4010–4017

    Article  PubMed  CAS  Google Scholar 

  21. Rabinowich H, Sedlmayr P, Herberman RB, Whiteside TL (1991) Increased proliferation, lytic activity, and purity of human natural killer cells cocultured with mitogen-activated feeder cells. Cell Immunol 135:454–470

    Article  PubMed  CAS  Google Scholar 

  22. Robertson MJ, Cameron C, Lazo S, Cochran KJ, Voss SD, Ritz J (1996) Costimulation of human natural killer cell proliferation: role of accessory cytokines and cell contact-dependent signals. Nat Immun 15:213–226

    PubMed  CAS  Google Scholar 

  23. Condiotti R, Zakai YB, Barak V, Nagler A (2001) Ex vivo expansion of CD56+ cytotoxic cells from human umbilical cord blood. Exp Hematol 29:104–113

    Article  PubMed  CAS  Google Scholar 

  24. Miller JS, Oelkers S, Verfaillie C, McGlave P (1992) Role of monocytes in the expansion of human activated natural killer cells. Blood 80:2221–2229

    PubMed  CAS  Google Scholar 

  25. Perussia B, Ramoni C, Anegon I, Cuturi MC, Faust J, Trinchieri G (1987) Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul 6:171–188

    PubMed  CAS  Google Scholar 

  26. Igarashi T, Wynberg J, Srinivasan R et al (2004) Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 104:170–177

    Article  PubMed  CAS  Google Scholar 

  27. Harada H, Watanabe S, Saijo K, Ishiwata I, Ohno T (2004) A Wilms tumor cell line, HFWT, can greatly stimulate proliferation of CD56+ human natural killer cells and their novel precursors in blood mononuclear cells. Exp Hematol 32:614–621

    Article  PubMed  Google Scholar 

  28. Imai C, Iwamoto S, Campana D (2005) Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106:376–383

    Article  PubMed  CAS  Google Scholar 

  29. Fujisaki H, Kakuda H, Imai C, Mullighan CG, Campana D (2009) Replicative potential of human natural killer cells. Br J Haematol 145:606–613

    Article  PubMed  CAS  Google Scholar 

  30. Melero I, Johnston JV, Shufford WW, Mittler RS, Chen L (1998) NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell Immunol 190:167–172

    Article  PubMed  CAS  Google Scholar 

  31. Carson WE, Fehniger TA, Haldar S et al (1997) A potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99:937–943

    Article  PubMed  CAS  Google Scholar 

  32. Cooper MA, Bush JE, Fehniger TA et al (2002) In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100:3633–3638

    Article  PubMed  CAS  Google Scholar 

  33. Fehniger TA, Caligiuri MA (2001) Ontogeny and expansion of human natural killer cells: clinical implications. Int Rev Immunol 20:503–534

    Article  PubMed  CAS  Google Scholar 

  34. Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156

    Article  PubMed  CAS  Google Scholar 

  35. Musso T, Calosso L, Zucca M et al (1999) Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 93:3531–3539

    PubMed  CAS  Google Scholar 

  36. Koka R, Burkett P, Chien M, Chai S, Boone DL, Ma A (2004) Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells. J Immunol 173:3594–3598

    PubMed  CAS  Google Scholar 

  37. Kobayashi H, Dubois S, Sato N et al (2005) The role of trans-cellular IL-15-presentation in the activation of NK-mediated killing, which leads to enhanced tumor immunesurveillance. Blood 105:721–727

    Article  PubMed  CAS  Google Scholar 

  38. Orange JS (2008) Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol 8:713–725

    Article  PubMed  CAS  Google Scholar 

  39. Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H, Campana D (2010) Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res 16:3901–3909

    Article  PubMed  CAS  Google Scholar 

  40. Altvater B, Landmeier S, Pscherer S et al (2009) 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res 15:4857–4866

    Article  PubMed  CAS  Google Scholar 

  41. Rabinovich PM, Komarovskaya ME, Ye ZJ et al (2006) Synthetic messenger RNA as a tool for gene therapy. Hum Gene Ther 17:1027–1035

    Article  PubMed  CAS  Google Scholar 

  42. Rabinovich PM, Komarovskaya ME, Wrzesinski SH et al (2009) Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum Gene Ther 20:51–61

    Article  PubMed  CAS  Google Scholar 

  43. Li L, Liu LN, Feller S et al (2010) Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther 17:147–154

    Article  PubMed  CAS  Google Scholar 

  44. Shimasaki N, Fujisaki H, Cho D, Masselli M, Lockey T, Eldridge P, Leung W, Campana D (2012) A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy 14:830-840

    Article  PubMed  CAS  Google Scholar 

  45. Lee DA, Verneris MR, Campana D (2010) Acquisition, preparation, and functional assessment of human NK cells for adoptive immunotherapy. Methods Mol Biol 651:61–77

    Article  PubMed  CAS  Google Scholar 

  46. Imai C, Mihara K, Andreansky M, Nicholson IC, Pui CH, Campana D (2004) Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18:676–684

    Article  PubMed  CAS  Google Scholar 

  47. Phillips JH, Lanier LL (1985) A model for the differentiation of human natural killer cells. Studies on the in vitro activation of Leu-11+ granular lymphocytes with a natural killer-sensitive tumor cell, K562. J Exp Med 161:1464–1482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants CA113482 and CA21765 from the National Cancer Institute and by the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Campana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shimasaki, N., Campana, D. (2013). Natural Killer Cell Reprogramming with Chimeric Immune Receptors. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics