Skip to main content

Determination of Beta-Cell Function: Ion Channel Function in Beta Cells

  • Protocol
  • First Online:
Animal Models in Diabetes Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 933))

  • 5086 Accesses

Abstract

For the regulation of beta-cell function ion channels are of outstanding importance. Beta cells are specialized to convert changes in blood glucose concentration to an adequate secretory response. To achieve this, nutrient-induced alterations of electrical activity are directly coupled to changes in insulin release. Consequently, determination and analysis of ion channel activity are important tools for the characterization of beta-cell (patho)physiology and for the investigation of drugs that influence insulin release. With implementation of the patch-clamp technique it has become possible to analyze ion currents in beta cells under various conditions (e.g., in intact cells or independent of cell metabolism, as whole-cell currents or on a single channel level). In addition, this method enables to combine ion current recordings with determination of membrane potential and exocytosis. This chapter introduces the basic principles of different patch-clamp configurations and focuses on experimental protocols for ion channel recordings in beta cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashcroft FM, Rorsman P (1989) Electro­physiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143

    Article  Google Scholar 

  2. Henquin JC, Nenquin M, Ravier MA et al (2009) Shortcomings of current models of glucose-induced insulin secretion. Diabetes Obes Metab Suppl 4:168–179

    Article  Google Scholar 

  3. Drews G, Krippeit-Drews P, Düfer M (2010) Electrophysiology of islet cells. In: Islam MS (ed) Adv Exp Med Biol 654, Springer, pp 115–163

    Google Scholar 

  4. Pressel DM, Misler S (1990) Sodium channels contribute to action potential generation in canine and human pancreatic islet B cells. J Membr Biol 116:273–280

    Article  PubMed  CAS  Google Scholar 

  5. Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628

    Article  PubMed  CAS  Google Scholar 

  6. Smith PA, Bokvist K, Arkhammar P et al (1990) Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic beta-cells. J Gen Physiol 95:1041–1059

    Article  PubMed  CAS  Google Scholar 

  7. Henquin JC (1990) Role of voltage- and Ca2+-dependent K+ channels in the control of glucose-induced electrical activity in pancreatic B-cells. Pflügers Arch 416:568–572

    Article  PubMed  CAS  Google Scholar 

  8. Düfer M, Gier B, Wolpers D et al (2009) SK4 channels are involved in the regulation of glucose homeostasis and pancreatic beta-cell function. Diabetes 58:1835–1843

    Article  PubMed  Google Scholar 

  9. Düfer M, Neye Y, Hörth K et al (2011) BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia 54:423–432

    Article  PubMed  Google Scholar 

  10. Houamed KM, Sweet IR, Satin LS (2010) BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells. J Physiol 588:3511–3523

    Article  PubMed  CAS  Google Scholar 

  11. Rolland JF, Henquin JC, Gilon P (2002) Feedback control of the ATP-sensitive K+ current by cytosolic Ca2+ contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 51:376–384

    Article  PubMed  CAS  Google Scholar 

  12. Smith PA, Ashcroft FM, Rorsman P (1990) Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K+-currents in isolated mouse pancreatic beta-cells. FEBS Lett 261:187–190

    Article  PubMed  CAS  Google Scholar 

  13. Krippeit-Drews P, Düfer M, Drews G (2000) Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem Biophys Res Commun 267:179–183

    Article  PubMed  CAS  Google Scholar 

  14. Kanno T, Rorsman P, Göpel SO (2002) Glucose-dependent regulation of rhythmic action potential firing in pancreatic beta-cells by KATP-channel modulation. J Physiol 545:501–507

    Article  PubMed  CAS  Google Scholar 

  15. Zhang M, Houamed K, Kupershmidt S et al (2005) Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126:353–363

    Article  PubMed  CAS  Google Scholar 

  16. Meissner HP, Schmelz H (1974) Membrane potential of beta-cells in pancreatic islets. Pflügers Arch 351:195–206

    Article  PubMed  CAS  Google Scholar 

  17. Islam MS (2011) TRP channels of islets. In: Islam MS (ed) Adv Exp Med Biol 704, Springer, 811–830

    Google Scholar 

  18. Togashi K, Hara Y, Tominaga T et al (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25:1804–1815

    Article  PubMed  CAS  Google Scholar 

  19. Wagner TF, Loch S, Lambert S et al (2008) Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol 10:1421–1430

    Article  PubMed  CAS  Google Scholar 

  20. Britsch S, Krippeit-Drews P, Gregor M et al (1994) Effects of osmotic changes in extracellular solution on electrical activity of mouse pancreatic B-cells. Biochem Biophys Res Commun 204:641–645

    Article  PubMed  CAS  Google Scholar 

  21. Best L (1999) Cell-attached recordings of the volume-sensitive anion channel in rat pancreatic beta-cells. Biochim Biophys Acta 1419:248–256

    Article  PubMed  CAS  Google Scholar 

  22. El-Kholy W, MacDonald PE, Fox JM et al (2007) Hyperpolarization-activated cyclic nucleotide-gated channels in pancreatic beta-cells. Mol Endocrinol 21:753–764

    Article  PubMed  CAS  Google Scholar 

  23. Meissner P (1990) Membrane potential measurements in pancreatic beta cells with intracellular microelectrodes. Methods Enzymol 192:235–246

    Article  PubMed  CAS  Google Scholar 

  24. Sakmann B, Neher E (1983) Single channel recording. Plenum Press, New York

    Google Scholar 

  25. Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273

    Article  PubMed  CAS  Google Scholar 

  26. Findlay I, Dunne MJ (1985) Voltage-activated Ca2+ currents in insulin-secreting cells. FEBS Lett 189:281–285

    Article  PubMed  CAS  Google Scholar 

  27. Rorsman P, Bokvist K, Ämmälä C et al (1994) Ion channels, electrical activity and insulin secretion. Diabetes Metab 20:138–145

    CAS  Google Scholar 

  28. Houamed K, Fu J, Roe MW et al (2004) Electrophysiology of the pancreatic beta-cell. In: LeRoith D et al (eds) Diabetes mellitus: a fundamental and clinical text, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia

    Google Scholar 

  29. Plant TD (1988) Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol 404:731–747

    PubMed  CAS  Google Scholar 

  30. MacDonald PE, Wheeler MB (2003) Voltage-dependent K+ channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46:1046–1062

    Article  PubMed  CAS  Google Scholar 

  31. Jacobson DA, Mendez F, Thompson M et al (2010) Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol 588:3525–3537

    Article  PubMed  CAS  Google Scholar 

  32. Düfer M, Krippeit-Drews P, Drews G (2002) Inhibition of mitochondrial function affects cellular Ca2+ handling in pancreatic B-cells. Pflügers Arch 444:236–243

    Article  PubMed  Google Scholar 

  33. Tarasov AI, Girard CA, Ashcroft FM (2006) ATP sensitivity of the ATP-sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes 55:2446–2454

    Article  PubMed  CAS  Google Scholar 

  34. Schulze DU, Düfer M, Wieringa B et al (2007) An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells. Diabetologia 50:2126–2134

    Article  PubMed  CAS  Google Scholar 

  35. Quoix N, Cheng-Xue R, Mattart L et al (2009) Glucose and pharmacological modulators of ATP-sensitive K+ channels control (Ca2+)c by different mechanisms in isolated mouse alpha-cells. Diabetes 58:412–421

    Article  PubMed  CAS  Google Scholar 

  36. Gromada J, Ma X, Høy M et al (2004) ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1−/− mouse alpha-cells. Diabetes 53(Suppl 3):S181–S189

    Article  PubMed  CAS  Google Scholar 

  37. Manning Fox JE, Gyulkhandanyan AV, Satin LS et al (2006) Oscillatory membrane potential response to glucose in islet beta-cells: a comparison of islet-cell electrical activity in mouse and rat. Endocrinology 147:4655–4663

    Article  PubMed  CAS  Google Scholar 

  38. Barg S, Galvanovskis J, Göpel SO et al (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510

    Article  PubMed  CAS  Google Scholar 

  39. Plant TD (1988) Na+ currents in cultured mouse pancreatic B-cells. Pflügers Arch 411:429–435

    Article  PubMed  CAS  Google Scholar 

  40. Rorsman P, Ashcroft FM, Trube G (1988) Single Ca channel currents in mouse pancreatic B-cells. Pflügers Arch 412:597–603

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Düfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Düfer, M. (2012). Determination of Beta-Cell Function: Ion Channel Function in Beta Cells. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology, vol 933. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-068-7_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-067-0

  • Online ISBN: 978-1-62703-068-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics