Skip to main content

Sperm Chromatin Structure Assay (SCSA®)

  • Protocol
  • First Online:
Spermatogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 927))

Abstract

The SCSA® is the pioneering assay for the detection of damaged sperm DNA and altered proteins in sperm nuclei via flow cytometry of acridine orange (AO) stained sperm. The SCSA® is considered to be the most precise and repeatable test providing very unique, dual parameter data (red vs. green fluorescence) on a 1,024 × 1,024 channel scale, not only on DNA fragmentation but also on abnormal sperm characterized by lack of normal exchange of histones to protamines. Raw semen/sperm aliquots or purified sperm can be flash frozen, placed in a box with dry ice and shipped by overnight courier to an experienced SCSA® lab. The samples are individually thawed, prepared, and analyzed in ∼10 min. Of significance, data on 5,000 individual sperm are recorded on a 1,024 × 1,024 dot plot of green (native DNA) and red (broken DNA) fluorescence. Repeat measurements have virtually identical dot plot patterns demonstrating that the low pH treatment that opens up the DNA strands at the sites of breaks and staining by acridine orange (AO) are highly precise and repeatable (CVs of 1–3%) and the same between fresh and frozen samples. SCSAsoft® software transforms the X-Y data to total DNA stainability versus red/red + green fluoresence (DFI) providing a more accurate determination of % DFI as well as the more sensitive value of standard deviation of DFI (SD DFI) as demonstrated by animal fertility and dose–response toxicology studies. The current established clinical threshold is 25% DFI for placing a man into a statistical probability of the following: (a) longer time to natural pregnancy, (b) low odds of IUI pregnancy, (c) more miscarriages, or (d) no pregnancy. Changes in lifestyle as well as medical intervention can lower the %DFI to increase the probability of natural pregnancy. Couples of men with >25% DFI are counseled to try ICSI and when in the >50% range may consider TESE/ICSI. The SCSA® simultaneously determines the % of sperm with high DNA stainability (%HDS) related to retained nuclear histones consistent with immature sperm; high HDS values are predictive of pregnancy failure.

The SCSA® is considered to be the most technician friendly, time- and cost-efficient, precise and repeatable DNA fragmentation assay, with the most data and the only fragmentation assay with an accepted clinical threshold for placing a man at risk for infertility. SCSA® data are more predictive of male factor infertility than classical semen analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaffay SC, Strader LF, Buss RM, et al (2006) Relationship among semen endpoints used as indicators of sperm nuclear integrity. Am Soc Androl Abstract

    Google Scholar 

  2. Evenson DP et al (2000) Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl 21:739–746

    PubMed  CAS  Google Scholar 

  3. Evenson DP et al (1980) Comparison of human and mouse sperm chromatin structure by flow cytometry. Chromosoma 78:225–238

    Article  PubMed  CAS  Google Scholar 

  4. Evenson D (2011) Sperm Chromatin Structure Assay (SCSA): 30 Years of Experience with the SCSA. In: Zini A, Agarwal A, editors. Sperm Chromatin. Springer. P. 147

    Article  PubMed  CAS  Google Scholar 

  5. Evenson DP et al (1991) Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol 5:115–125

    Article  PubMed  CAS  Google Scholar 

  6. Erenpreiss J et al (2006) Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Hum Reprod 21:2061–2064

    Article  PubMed  CAS  Google Scholar 

  7. Evenson DP et al (1989) Long-term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flow cytometry. Environ Mol Mutagen 14:79–89

    Article  PubMed  CAS  Google Scholar 

  8. Evenson DP et al (1993) Effects of methyl methanesulfonate on mouse sperm chromatin structure and testicular cell kinetics. Environ Mol Mutagen 21:144–153

    Article  PubMed  CAS  Google Scholar 

  9. Ballachey BE et al (1988) The sperm chromatin structure assay. Relationship with alternate tests of semen quality and heterospermic performance of bulls. J Androl 9:109–115

    PubMed  CAS  Google Scholar 

  10. Kenney RM et al (1995) Relationships between sperm chromatin structure, motility, and morphology of ejaculated sperm, and seasonal pregnancy rate. Biol Reprod Mono 1: 647–653

    Google Scholar 

  11. Evenson DP et al (1980) Relation of mammalian sperm chromatin heterogeneity to fertility. Science 210:1131–1133

    Article  PubMed  CAS  Google Scholar 

  12. Evenson DP et al (1999) Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14:1039–1049

    Article  PubMed  CAS  Google Scholar 

  13. Bungum M et al (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22:174–179

    Article  PubMed  CAS  Google Scholar 

  14. Giwercman A et al (2010) Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl 33:e221–e227

    Article  PubMed  Google Scholar 

  15. Didion BA et al (2009) Boar fertility and sperm chromatin structure status: a retrospective report. J Androl 30:655–660

    Article  PubMed  Google Scholar 

  16. Boe-Hansen GB et al (2008) Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology 69:728–736

    Article  PubMed  CAS  Google Scholar 

  17. Ahmadi A, Ng SC (1999) Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 284:696–704

    Article  PubMed  CAS  Google Scholar 

  18. Saleh RA et al (2003) Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 79(Suppl 3):1597–1605

    Article  PubMed  Google Scholar 

  19. Wyrobek AJ et al (2006) Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. In: Annual meeting of the national academy of science, USA

    Google Scholar 

  20. Rubes J et al (2007) GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mutat Res 625:20–28

    Article  PubMed  CAS  Google Scholar 

  21. Rubes J et al (2005) Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod 20:2776–2783

    Article  PubMed  CAS  Google Scholar 

  22. Chen SS et al (2004) 8-Hydroxy-2′-deoxyguanosine in leukocyte DNA of spermatic vein as a biomarker of oxidative stress in patients with varicocele. J Urol 172:1418–1421

    Article  PubMed  CAS  Google Scholar 

  23. Zini A et al (2005) Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod 20:1018–1021

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto M et al (1994) The effect of varicocele ligation on oocyte fertilization and pregnancy after failure of fertilization in in vitro fertilization-embryo transfer. Hinyokika Kiyo 40:683–687

    PubMed  CAS  Google Scholar 

  25. Werthman P et al (2008) Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril 90:1800–1804

    Article  PubMed  Google Scholar 

  26. Evenson DP et al (1984) Flow cytometric evaluation of sperm from patients with testicular carcinoma. J Urol 132:1220–1225

    PubMed  CAS  Google Scholar 

  27. Fossa SD et al (1997) Prediction of posttreatment spermatogenesis in patients with testicular cancer by flow cytometric sperm chromatin structure assay. Cytometry 30:192–196

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez-Pena LC et al (2004) Organo­phosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol Appl Pharmacol 196:108–113

    Article  PubMed  CAS  Google Scholar 

  29. Karabinus DS et al (1997) Chromatin structural changes in sperm after scrotal insulation of Holstein bulls. J Androl 18:549–555

    PubMed  CAS  Google Scholar 

  30. Sailer BL et al (1997) Effects of heat stress on mouse testicular cells and sperm chromatin structure. J Androl 18:294–301

    PubMed  CAS  Google Scholar 

  31. Tanrikut C et al (2010) Adverse effect of paroxetine on sperm. Fertil Steril 94:1021–1026

    Article  PubMed  CAS  Google Scholar 

  32. Agbaje IM et al (2007) Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod 22:1871–1877

    Article  PubMed  CAS  Google Scholar 

  33. Pitteloud N et al (2005) Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J Clin Endocrinol Metab 90:2636–2641

    Article  PubMed  CAS  Google Scholar 

  34. Stigsby B (2010) Personal communication

    Google Scholar 

  35. (2006) The clinical utility of sperm DNA integrity testing. Fertil Steril 86: S35–S37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald P. Evenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Evenson, D.P. (2013). Sperm Chromatin Structure Assay (SCSA®). In: Carrell, D., Aston, K. (eds) Spermatogenesis. Methods in Molecular Biology, vol 927. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-038-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-038-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-037-3

  • Online ISBN: 978-1-62703-038-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics