Skip to main content

Affinity Electrophoresis as a Method for Determining Substrate-Binding Specificity of Carbohydrate-Active Enzymes for Soluble Polysaccharides

  • Protocol
  • First Online:
Biomass Conversion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 908))

Abstract

Affinity electrophoresis is a simple and rapid tool for the analysis of protein-binding affinities to soluble polysaccharides. This approach is particularly suitable for the characterization of the carbohydrate-active enzymes that contain a carbohydrate-binding module and for their mutants and chimeras. Knowledge of the binding characteristics of these enzymes can be the first step to elucidate the enzymatic activity of a putative enzyme; moreover in some cases, enzymes are able to bind polysaccharides targets other than their specified substrate, and this knowledge can be essential to understand the basics of the intrinsic mechanism of these enzymes in their natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455

    Article  CAS  Google Scholar 

  2. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  Google Scholar 

  3. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  Google Scholar 

  4. Lamed R, Kenig R, Setter E, Bayer EA (1985) Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb Technol 7:37–41

    Article  CAS  Google Scholar 

  5. Irwin D, Jung ED, Wilson DB (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60:763–770

    CAS  Google Scholar 

  6. Kim JH, Irwin D, Wilson DB (2004) Purification and characterization of Thermobifida fusca xylanase 10B. Can J Microbiol 50:835–843

    Article  CAS  Google Scholar 

  7. Lykidis A, Mavromatis K, Ivanova N, Anderson I, Land M, DiBartolo G, Martinez M, Lapidus A, Lucas S, Copeland A, Richardson P, Wilson DB, Kyrpides N (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189:2477–2486

    Article  CAS  Google Scholar 

  8. Wilson DB (2004) Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem Rec 4:72–82

    Article  CAS  Google Scholar 

  9. Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    CAS  Google Scholar 

  10. Lamed R, Setter E, Kenig R, Bayer EA (1983) The cellulosome—A discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13:163–181

    CAS  Google Scholar 

  11. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557

    Article  CAS  Google Scholar 

  12. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281

    Article  CAS  Google Scholar 

  13. Fontes CM, Gilbert HJ (2010) Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 79:655–81

    Article  CAS  Google Scholar 

  14. Yaron S, Morag E, Bayer EA, Lamed R, Shoham Y (1995) Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome. FEBS Lett 360:121–124

    Article  CAS  Google Scholar 

  15. Bayer EA, Morag E, Lamed R (1994) The cellulosome—A treasure-trove for biotechnology. Trends Biotechnol 12:378–386

    Article  Google Scholar 

  16. Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich J-P, Bayer EA (2001) Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 276:21257–21261

    Article  CAS  Google Scholar 

  17. Fierobe H-P, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich J-P (2002) Degradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme components. J Biol Chem 277:49621–49630

    Article  CAS  Google Scholar 

  18. Fierobe H-P, Mingardon F, Mechaly A, Belaich A, Rincon MT, Lamed R, Tardif C, Belaich J-P, Bayer EA (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem 280:16325–16334

    Article  CAS  Google Scholar 

  19. Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe H-P, Wilson DB, Bayer EA (2006) Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal Biotransformation 24:3–12

    Article  CAS  Google Scholar 

  20. Caspi J, Irwin D, Lamed R, Fierobe H-P, Wilson DB, Bayer EA (2008) Conversion of noncellulosomal Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 135:351–357

    Article  CAS  Google Scholar 

  21. Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA (2009) Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 75:7335–7342

    Article  CAS  Google Scholar 

  22. Caspi J, Barak Y, Haimovitz R, Gilary H, Irwin D, Lamed R, Wilson DB, Bayer EA (2010) Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 4:193–201

    Article  Google Scholar 

  23. Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl Environ Microbiol 76:3787–3796

    Article  Google Scholar 

  24. Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1:e00285–00210

    Article  Google Scholar 

  25. Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA (2010) Interplay between Clostridium thermocellum family-48 and family-9 cellulases in the cellulosomal versus non-cellulosomal states. Appl Environ Microbiol 76:3236–3243

    Article  CAS  Google Scholar 

  26. Ding S-Y, Rincon MT, Lamed R, Martin JC, McCrae SI, Aurilia V, Shoham Y, Bayer EA, Flint HJ (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183:1945–1953

    Article  CAS  Google Scholar 

  27. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  Google Scholar 

  28. Hengen P (1995) Purification of His-Tag fusion proteins from Escherichia coli. Trends Biochem Sci 20:285–286

    Article  CAS  Google Scholar 

  29. Tomme P, Boraston A, Kormos JM, Warren RA, Kilburn DG (2000) Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzyme Microb Technol 27:453–458

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moraïs, S., Lamed, R., Bayer, E.A. (2012). Affinity Electrophoresis as a Method for Determining Substrate-Binding Specificity of Carbohydrate-Active Enzymes for Soluble Polysaccharides. In: Himmel, M. (eds) Biomass Conversion. Methods in Molecular Biology, vol 908. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-956-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-956-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-955-6

  • Online ISBN: 978-1-61779-956-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics